CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

Overview

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

(Accepted for oral presentation at ACMMM '21)

Paper Link: (arXiv) (ACMMM version)

CLRNet-pipeline

CLRNet-pipeline

Overview

We propose Continual Representation using Distillation (CoReD) method that employs the concept of Continual Learning (CL), Representation Learning (RL), and Knowledge Distillation (KD).

Comparison Baselines

  • Transfer-Learning (TL) : The first method is Transfer learning, where we perform fine-tuning on the model to learning the new Task.
  • Distillaion Loss (DL) : The third method is a part of our ablation study, wherewe only use the distillation loss component from our CoReD loss function to perform incremental learning.
  • Transferable GAN-generated Images Detection Framewor (TG) : The second method is a KD-based GAN image detection framework using L2-SP and self-training.

Requirements and Installation

We recommend the installation using the requilrements.txt contained in this Github.

python==3.8.0
torchvision==0.9.1
torch==1.8.1
sklearn
numpy
opencv_python

pip install -r requirements.txt

- Train & Evaluation

- Full Usages

  -m                   Model name = ['CoReD','KD','TG','FT']
  -te                  Turn on test mode True/False
  -s                   Name of 'Source' datasets. one or multiple names. (ex. DeepFake / DeepFake_Face2Face / DeepFake_Face2Face_FaceSwap)
  -t                   Name of 'Target' dataset. only a single name. (ex.DeepFake / Face2Face / FaceSwap / NeuralTextures) / used for Train only')
  -folder1             Sub-name of folder in Save path when model save
  -folder2             'name of folder that will be made in folder1 (just option)'
  -d                   Folder of path must contains Sources & Target folder names
  -w                   You can select the full path or folder path included in the '.pth' file
  -lr                  Learning late (For training)
  -a                   Alpha of KD-Loss
  -nc                  Number of Classes
  -ns                  Number of Stores
  -me                  Number of Epoch (For training)
  -nb                  Batch-Size
  -ng                  GPU-device can be set as ei 0,1,2 for multi-GPU (default=0) 

- Train

To train and evaluate the model(s) in the paper, run this command:

  • Task1 We must train pre-trained single model for task1 .
    python main.py -s={Source Name} -d={folder_path} -w={weights}  
    python main.py -s=DeepFake -d=./mydrive/dataset/' #Example 
    
  • Task2 - 4
    python main.py -s={Source Name} -t={Target Name} -d={folder_path} -w={weights}  
    python main.py -s=Face2Face_DeepFake -t=FaceSwap -d=./mydrive/dataset/ -w=./weights' #Example
    
  • Note that If you set -s=Face2Face_DeepFake -t=FaceSwap -d=./mydrive/dataset -w=./weights when you start training, data path "./mydrive/dataset" must include 'Face2Face', 'DeepFake', and 'FaceSwap', and these must be contained the 'train','val' folder which include 'real'&'fake' folders.

- Evaluation

After train the model, you can evaluate the dataset.

  • Eval
    python main.py -d= -w={weights} --test  
    python main.py -d=./mydrive/dataset/DeepFake/testset -w=./weights/bestmodel.pth --test #Example
    

- Result

  • AUC scores (%) of various methods on compared datasets.

- Task1 (GAN datasets and FaceForensics++ datasets)

- Task2 - 4

Citation

If you find our work useful for your research, please consider citing the following papers :)

@misc{kim2021cored,
    title={CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation},
    author={Minha Kim and Shahroz Tariq and Simon S. Woo},
    year={2021},
    eprint={2107.02408},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

- Contect

If you have any questions, please contact us at kimminha/[email protected]

- License

The code is released under the MIT license. Copyright (c) 2021

Owner
Minha Kim
@DASH-Lab on Sungkyunkwan University in Korea
Minha Kim
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022