CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

Overview

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

(Accepted for oral presentation at ACMMM '21)

Paper Link: (arXiv) (ACMMM version)

CLRNet-pipeline

CLRNet-pipeline

Overview

We propose Continual Representation using Distillation (CoReD) method that employs the concept of Continual Learning (CL), Representation Learning (RL), and Knowledge Distillation (KD).

Comparison Baselines

  • Transfer-Learning (TL) : The first method is Transfer learning, where we perform fine-tuning on the model to learning the new Task.
  • Distillaion Loss (DL) : The third method is a part of our ablation study, wherewe only use the distillation loss component from our CoReD loss function to perform incremental learning.
  • Transferable GAN-generated Images Detection Framewor (TG) : The second method is a KD-based GAN image detection framework using L2-SP and self-training.

Requirements and Installation

We recommend the installation using the requilrements.txt contained in this Github.

python==3.8.0
torchvision==0.9.1
torch==1.8.1
sklearn
numpy
opencv_python

pip install -r requirements.txt

- Train & Evaluation

- Full Usages

  -m                   Model name = ['CoReD','KD','TG','FT']
  -te                  Turn on test mode True/False
  -s                   Name of 'Source' datasets. one or multiple names. (ex. DeepFake / DeepFake_Face2Face / DeepFake_Face2Face_FaceSwap)
  -t                   Name of 'Target' dataset. only a single name. (ex.DeepFake / Face2Face / FaceSwap / NeuralTextures) / used for Train only')
  -folder1             Sub-name of folder in Save path when model save
  -folder2             'name of folder that will be made in folder1 (just option)'
  -d                   Folder of path must contains Sources & Target folder names
  -w                   You can select the full path or folder path included in the '.pth' file
  -lr                  Learning late (For training)
  -a                   Alpha of KD-Loss
  -nc                  Number of Classes
  -ns                  Number of Stores
  -me                  Number of Epoch (For training)
  -nb                  Batch-Size
  -ng                  GPU-device can be set as ei 0,1,2 for multi-GPU (default=0) 

- Train

To train and evaluate the model(s) in the paper, run this command:

  • Task1 We must train pre-trained single model for task1 .
    python main.py -s={Source Name} -d={folder_path} -w={weights}  
    python main.py -s=DeepFake -d=./mydrive/dataset/' #Example 
    
  • Task2 - 4
    python main.py -s={Source Name} -t={Target Name} -d={folder_path} -w={weights}  
    python main.py -s=Face2Face_DeepFake -t=FaceSwap -d=./mydrive/dataset/ -w=./weights' #Example
    
  • Note that If you set -s=Face2Face_DeepFake -t=FaceSwap -d=./mydrive/dataset -w=./weights when you start training, data path "./mydrive/dataset" must include 'Face2Face', 'DeepFake', and 'FaceSwap', and these must be contained the 'train','val' folder which include 'real'&'fake' folders.

- Evaluation

After train the model, you can evaluate the dataset.

  • Eval
    python main.py -d= -w={weights} --test  
    python main.py -d=./mydrive/dataset/DeepFake/testset -w=./weights/bestmodel.pth --test #Example
    

- Result

  • AUC scores (%) of various methods on compared datasets.

- Task1 (GAN datasets and FaceForensics++ datasets)

- Task2 - 4

Citation

If you find our work useful for your research, please consider citing the following papers :)

@misc{kim2021cored,
    title={CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation},
    author={Minha Kim and Shahroz Tariq and Simon S. Woo},
    year={2021},
    eprint={2107.02408},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

- Contect

If you have any questions, please contact us at kimminha/[email protected]

- License

The code is released under the MIT license. Copyright (c) 2021

Owner
Minha Kim
@DASH-Lab on Sungkyunkwan University in Korea
Minha Kim
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022