YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

Overview

자율 주행차의 영상 기반 차간거리 유지 개발

Table of Contents


프로젝트 소개


YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능을 제공한다.


주요 기능

객체 인식

  • 복도에서의 차량 카트 이미지를 촬영하여 커스텀 데이터셋을 제작
  • YOLO-v5 모델 중 가장 초당 프레임 수 가 높은 YOLO-v5s에 커스텀 데이터셋을 학습
  • 라즈베리파이에 부착된 웹캠을 통해 실시간으로 전방 차량 인식

거리 측정

  • 객체 인식 시 나타나는 Bounding box의 좌표값을 추출하여 대상과의 거리가 1m 일 때 Bounding box의 높이와 너비값을 측정
  • 이후 인식된 객체의 Bounding box 높이와 너비값과 1m 일 때의 Bounding box 높이와 너비값의 비례식을 통해 거리를 측정

거리 유지

  • 측정된 거리 기반으로 동작을 나누어 시리얼 통신을 통해 동작 신호를 cart 조작하는 STM보드에 전달
  • STM보드에서 전달받은 신호를 기반으로 PWM 제어를 통해 차간 거리가 유지되도록 속도 조절

시스템 구조

객체 인식 및 거리측정 시스템 구조

거리유지 시스템 구조

거리측정 알고리즘

  • 카메라의 해상도에 따라 1m에서 기준이 되는 Bounding box의 width와 height의 크기가 달라진다

디렉토리 구조

adaptive-cruise-control
├── cart
│   ├── main_arm.c
│   ├── main_cart.c
│   └── README.md
│
├── dataset
│   └── ...
│
├── yolov5
│   ├── detect_custom.py
│   ├── cart_model.pt
│   └── ...
│
└── README.md

결과

실시간 객체 인식 및 거리측정

  • 학습된 가중치 모델을 바탕으로 단안 카메라를 이용하여 전방 차량 키트를 인식하였다.

  • 인식된 차량 키트에 대한 Bounding box에서 왼쪽부터 클래스명, 예측 정확도, 단안 카메라 기준 예측 거리(cm) 를 나타낸다.

  • 인식 결과, 이미지 크기 128*128 기준 평균적으로 초당 약 3 프레임의 속도로 동작하였으며, 최대 5m까지 높은 정확도로 인식됨을 확인할 수 있었다.

  • 거리 예측 오차율 측정 결과

실제 거리 측정 최소 거리 측정 최대 거리 최대 오차율
0.5m 0.47m 0.53m 6%
1m 0.96m 1.02m 3%
2m 1.98m 2.02m 1%
3m 2.85m 2.94m 5%
5m 4.65m 5.05m 7%

거리유지

동작 설정

  1. 전방 차량과의 거리가 70cm보다 가까워진 경우 차량 정지
  2. 전방 차량과의 거리가 70cm ~ 120cm인 경우 큰 폭으로 속도 감소
  3. 전방 차량과의 거리가 120cm ~ 150cm 인 경우 작은 폭으로 속도 감소
  4. 전방 차량이 없거나 거리가 150cm 보다 먼 경우 원래 주행 속도로 복구

거리유지 기능 실험 결과

  • 기준 주행 속도는 차량 키트가 스스로 움직일 수 있는 최저 속도로 설정하였다.
  • 테스트 결과, 거리가 1m에 가까워 지면 상당히 속도가 줄어들었고 0.7m에 이르면 차량 키트가 완전히 정지하였으며, 전방에 가까운 차량이 없으면 원래의 주행 속도로 돌아오는 기능 또한 정상적으로 동작함을 확인할 수 있었다.

실행 방법

YOLO v5를 활용한 실시간 객체 인식 및 거리 예측

  1. https://github.com/sungjuGit/Pytorch-and-Vision-for-Raspberry-Pi-4B 에서 Pytorch, Pytorch Vision 설치에 필요한 wheel 파일을 라즈베리파이에 다운로드한다.

  2. sudo pip3 install torch-1.8.0a0+56b43f4-cp37-cp37m-linux_armv7l.whl
    sudo pip3 install torchvision-0.9.0a0+8fb5838-cp37-cp37m-linux_armv7l.whl

  3. adative-cruise-control/yolov5를 라즈베리파이에 클론한다.

  4. pip3 install -r requirements.txt으로 필요한 종속 라이브러리를 설치한다.

  5. python3 detect_custom.py --weights cart_model.pt --img 128 --conf 0.4 --source 0 으로 실시간 객체 인식 및 거리 예측을 한다.

detect_custom.py : 객체인식 및 거리 예측을 위한 파이썬 파일
cart_model.pt : 커스텀 이미지로 학습된 yolo-v5s 가중치 모델


거리 예측을 바탕으로 카트 구동

  1. https://github.com/icns-distributed-cloud/Self-driving-project 을 노트북에 클론한다.

  2. Self-driving-project/2021_self_driving_cart/robot_arm_basic/Src/main.cadaptive-cruise-control/cart/main_arm.c으로 대치시킨다.

  3. Self-driving-project/2021_self_driving_cart/cart/Src/main.cadaptive-cruise-control/cart/main_cart.c으로 대치시킨다.

  4. ICNS Lab에서 제작한 카트에 있는 STM-Arm Board, STM-Cart Board에 각 코드를 디버깅한다.


Custom Dataset을 통한 YOLO-v5 Model 학습 방법

  • 데이터셋 수정을 통해 발전된 학습모델 제작을 원할 시 링크 참조

참조


팀원


👆 Back To The Top

Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022