NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

Related tags

Deep LearningTLM
Overview

NLP From Scratch Without Large-Scale Pretraining

This repository contains the code, pre-trained model checkpoints and curated datasets for our paper: NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework.

In our proposed framework, named TLM (task-driven language modeling), instead of training a language model over the entire general corpus and then finetuning it on task data, we first usetask data as queries to retrieve a tiny subset of the general corpus, and then perform joint learning on both the task objective and self-supervised language modeling objective.

Requirements

We implement our models and training loops based on the opensource products from HuggingFace. The core denpencies of this repository are listed in requirements.txt, which can be installed through:

pip install -r requirements.txt

All our experiments are conducted on a node with 8 A100 40GB SXM gpus. Different computational devices may result slightly different results from the reported ones.

Models and Datasets

We release the trained models on 8 tasks with 3 different scales, together with the task datasets and selected external data. Our released model checkpoints, datasets and the performance of each model for each task are listed in the following table.

AGNews Hyp. Help. IMDB ACL. SciERC Chem. RCT
Small 93.74 93.53 70.54 93.08 69.84 80.51 81.99 86.99
Medium 93.96 94.05 70.90 93.97 72.37 81.88 83.24 87.28
Large 94.36 95.16 72.49 95.77 72.19 83.29 85.12 87.50

The released models and datasets are compatible with HuggingFace's Transformers and Datasets. We provide an example script to evaluate a model checkpoints on a certain task, run

bash example_scripts/evaluate.sh

To get the evaluation results for SciERC with a small-scale model.

Training

We provide two example scripts to train a model from scratch, run

bash example_scripts/train.sh && bash example_scripts/finetune.sh

To train a small-scale model for SciERC. Here example_scripts/train.sh corresponds to the first stage training where the external data ratio and MLM weight are non-zero, and example_scripts/finetune.sh corresponds to the second training stage where no external data or self-supervised loss can be perceived by the model.

Citation

Please cite our paper if you use TLM in your work:

@misc{yao2021tlm,
title={NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework},
author={Yao, Xingcheng and Zheng, Yanan and Yang, Xiaocong and Yang, Zhilin},
year={2021}
}
Owner
Xingcheng Yao
Undergraduate student at IIIS, Tsinghua University
Xingcheng Yao
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022