NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

Related tags

Deep LearningTLM
Overview

NLP From Scratch Without Large-Scale Pretraining

This repository contains the code, pre-trained model checkpoints and curated datasets for our paper: NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework.

In our proposed framework, named TLM (task-driven language modeling), instead of training a language model over the entire general corpus and then finetuning it on task data, we first usetask data as queries to retrieve a tiny subset of the general corpus, and then perform joint learning on both the task objective and self-supervised language modeling objective.

Requirements

We implement our models and training loops based on the opensource products from HuggingFace. The core denpencies of this repository are listed in requirements.txt, which can be installed through:

pip install -r requirements.txt

All our experiments are conducted on a node with 8 A100 40GB SXM gpus. Different computational devices may result slightly different results from the reported ones.

Models and Datasets

We release the trained models on 8 tasks with 3 different scales, together with the task datasets and selected external data. Our released model checkpoints, datasets and the performance of each model for each task are listed in the following table.

AGNews Hyp. Help. IMDB ACL. SciERC Chem. RCT
Small 93.74 93.53 70.54 93.08 69.84 80.51 81.99 86.99
Medium 93.96 94.05 70.90 93.97 72.37 81.88 83.24 87.28
Large 94.36 95.16 72.49 95.77 72.19 83.29 85.12 87.50

The released models and datasets are compatible with HuggingFace's Transformers and Datasets. We provide an example script to evaluate a model checkpoints on a certain task, run

bash example_scripts/evaluate.sh

To get the evaluation results for SciERC with a small-scale model.

Training

We provide two example scripts to train a model from scratch, run

bash example_scripts/train.sh && bash example_scripts/finetune.sh

To train a small-scale model for SciERC. Here example_scripts/train.sh corresponds to the first stage training where the external data ratio and MLM weight are non-zero, and example_scripts/finetune.sh corresponds to the second training stage where no external data or self-supervised loss can be perceived by the model.

Citation

Please cite our paper if you use TLM in your work:

@misc{yao2021tlm,
title={NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework},
author={Yao, Xingcheng and Zheng, Yanan and Yang, Xiaocong and Yang, Zhilin},
year={2021}
}
Owner
Xingcheng Yao
Undergraduate student at IIIS, Tsinghua University
Xingcheng Yao
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
MediaPipe Kullanarak İleri Seviye Bilgisayarla GörĂŒ

MediaPipe Kullanarak İleri Seviye Bilgisayarla GörĂŒ

Burak Bagatarhan 12 Mar 29, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.xç‰ˆæœŹ https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022