Semi-automated OpenVINO benchmark_app with variable parameters

Overview

Semi-automated OpenVINO benchmark_app with variable parameters

Description

This program allows the users to specify variable parameters in the OpenVINO benchmark_app and run the benchmark with all combinations of the given parameters automatically.
The program will generate the report file in the CSV format with coded date and time file name ('result_DDmm-HHMMSS.csv'). You can analyze or visualize the benchmark result with MS Excel or a spreadsheet application.

The program is just a front-end for the OpenVINO official benchmark_app.
This program utilizes the benchmark_app as the benchmark core logic. So the performance result measured by this program must be consistent with the one measured by the benchmark_app.
Also, the command line parameters and their meaning are compatible with the benchmark_app.

Requirements

  • OpenVINO 2022.1 or higher
    This program is not compatible with OpenVINO 2021.

How to run

  1. Install required Python modules.
python -m pip install --upgrade pip setuptools
python -m pip install -r requirements.txt
  1. Run the auto benchmark (command line example)
python auto_benchmark_app.py -m resnet.xml -niter 100 -nthreads %1,2,4,8 -nstreams %1,2 -d %CPU,GPU -cdir cache

With this command line, -nthreads has 4 options (1,2,4,8), -nstreams has 2 options (1,2), and -d option has 2 options (CPU,GPU). As the result, 16 (4x2x2) benchmarks will be performed in total.

Parameter options

You can specify variable parameters by adding following prefix to the parameters.

Prefix Type Description/Example
$ range $1,8,2 == range(1,8,2) => [1,3,5,7]
All range() compatible expressions are possible. e.g. $1,5 or $5,1,-1
% list %CPU,GPU => ['CPU', 'GPU'], %1,2,4,8 => [1,2,4,8]
@ ir-models @models == IR models in the './models' dir => ['resnet.xml', 'googlenet.xml', ...]
This option will recursively search the '.xml' files in the specified directory.

Examples of command line

python auto_benchmark_app.py -cdir cache -m resnet.xml -nthreads $1,5 -nstreams %1,2,4,8 -d %CPU,GPU

  • Run benchmark with -nthreads=range(1,5)=[1,2,3,4], -nstreams=[1,2,4,8], -d=['CPU','GPU']. Total 32 combinations.

python auto_benchmark_app.py -m @models -niter 100 -nthreads %1,2,4,8 -nstreams %1,2 -d CPU -cdir cache

  • Run benchmark with -m=[all .xml files in models directory], -nthreads = [1,2,4,8], -nstreams=[1,2].

Example of a result file

The last 4 items in each line are the performance data in the order of 'count', 'duration (ms)', 'latency AVG (ms)', and 'throughput (fps)'.

#CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
#MEM: 33947893760
#OS: Windows-10-10.0.22000-SP0
#OpenVINO: 2022.1.0-7019-cdb9bec7210-releases/2022/1
#Last 4 items in the lines : test count, duration (ms), latency AVG (ms), and throughput (fps)
benchmark_app.py,-m,models\FP16\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,772.55,30.20,129.44
benchmark_app.py,-m,models\FP16\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1917.62,75.06,52.15
benchmark_app.py,-m,models\FP16\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,195.28,7.80,512.10
benchmark_app.py,-m,models\FP16-INT8\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,337.09,24.75,308.53
benchmark_app.py,-m,models\FP16-INT8\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1000.39,38.85,99.96
benchmark_app.py,-m,models\FP16-INT8\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,64.22,4.69,1619.38
benchmark_app.py,-m,models\FP32\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,778.90,30.64,128.39
benchmark_app.py,-m,models\FP32\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1949.73,76.91,51.29
benchmark_app.py,-m,models\FP32\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,182.59,7.58,547.69
benchmark_app.py,-m,models\FP32-INT8\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,331.73,24.90,313.51
benchmark_app.py,-m,models\FP32-INT8\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,968.38,38.45,103.27
benchmark_app.py,-m,models\FP32-INT8\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,67.70,5.04,1536.23
benchmark_app.py,-m,models\FP16\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1536.14,15.30,65.10
benchmark_app.py,-m,models\FP16\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,3655.59,36.50,27.36
benchmark_app.py,-m,models\FP16\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,366.73,3.68,272.68
benchmark_app.py,-m,models\FP16-INT8\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,872.87,8.66,114.56
benchmark_app.py,-m,models\FP16-INT8\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1963.67,19.54,50.93
benchmark_app.py,-m,models\FP16-INT8\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,242.28,2.34,412.74
benchmark_app.py,-m,models\FP32\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1506.14,14.96,66.39
benchmark_app.py,-m,models\FP32\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,3593.88,35.88,27.83
benchmark_app.py,-m,models\FP32\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,366.28,3.56,273.01
benchmark_app.py,-m,models\FP32-INT8\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,876.52,8.69,114.09
benchmark_app.py,-m,models\FP32-INT8\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1934.72,19.25,51.69

END

Owner
Yasunori Shimura
Yasunori Shimura
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022