Image augmentation library in Python for machine learning.

Overview

AugmentorLogo

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independent, which is more convenient, allows for finer grained control over augmentation, and implements the most real-world relevant augmentation techniques. It employs a stochastic approach using building blocks that allow for operations to be pieced together in a pipeline.

PyPI Supported Python Versions Documentation Status Build Status License Project Status: Active – The project has reached a stable, usable state and is being actively developed. Binder

Installation

Augmentor is written in Python. A Julia version of the package is also being developed as a sister project and is available here.

Install using pip from the command line:

pip install Augmentor

See the documentation for building from source. To upgrade from a previous version, use pip install Augmentor --upgrade.

Documentation

Complete documentation can be found on Read the Docs: http://augmentor.readthedocs.io/

Quick Start Guide and Usage

The purpose of Augmentor is to automate image augmentation (artificial data generation) in order to expand datasets as input for machine learning algorithms, especially neural networks and deep learning.

The package works by building an augmentation pipeline where you define a series of operations to perform on a set of images. Operations, such as rotations or transforms, are added one by one to create an augmentation pipeline: when complete, the pipeline can be executed and an augmented dataset is created.

To begin, instantiate a Pipeline object that points to a directory on your file system:

import Augmentor
p = Augmentor.Pipeline("/path/to/images")

You can then add operations to the Pipeline object p as follows:

p.rotate(probability=0.7, max_left_rotation=10, max_right_rotation=10)
p.zoom(probability=0.5, min_factor=1.1, max_factor=1.5)

Every function requires you to specify a probability, which is used to decide if an operation is applied to an image as it is passed through the augmentation pipeline.

Once you have created a pipeline, you can sample from it like so:

p.sample(10000)

which will generate 10,000 augmented images based on your specifications. By default these will be written to the disk in a directory named output relative to the path specified when initialising the p pipeline object above.

If you wish to process each image in the pipeline exactly once, use process():

p.process()

This function might be useful for resizing a dataset for example. It would make sense to create a pipeline where all of its operations have their probability set to 1 when using the process() method.

Multi-threading

Augmentor (version >=0.2.1) now uses multi-threading to increase the speed of generating images.

This may slow down some pipelines if the original images are very small. Set multi_threaded to False if slowdown is experienced:

p.sample(100, multi_threaded=False)

However, by default the sample() function uses multi-threading. This is currently only implemented when saving to disk. Generators will use multi-threading in the next version update.

Ground Truth Data

Images can be passed through the pipeline in groups of two or more so that ground truth data can be identically augmented.

Original image and mask[3] Augmented original and mask images
OriginalMask AugmentedMask

To augment ground truth data in parallel to any original data, add a ground truth directory to a pipeline using the ground_truth() function:

p = Augmentor.Pipeline("/path/to/images")
# Point to a directory containing ground truth data.
# Images with the same file names will be added as ground truth data
# and augmented in parallel to the original data.
p.ground_truth("/path/to/ground_truth_images")
# Add operations to the pipeline as normal:
p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)
p.flip_left_right(probability=0.5)
p.zoom_random(probability=0.5, percentage_area=0.8)
p.flip_top_bottom(probability=0.5)
p.sample(50)

Multiple Mask/Image Augmentation

Using the DataPipeline class (Augmentor version >= 0.2.3), images that have multiple associated masks can be augmented:

Multiple Mask Augmentation
MultipleMask

Arbitrarily long lists of images can be passed through the pipeline in groups and augmented identically using the DataPipeline class. This is useful for ground truth images that have several masks, for example.

In the example below, the images and their masks are contained in the images data structure (as lists of lists), while their labels are contained in y:

p = Augmentor.DataPipeline(images, y)
p.rotate(1, max_left_rotation=5, max_right_rotation=5)
p.flip_top_bottom(0.5)
p.zoom_random(1, percentage_area=0.5)

augmented_images, labels = p.sample(100)

The DataPipeline returns images directly (augmented_images above), and does not save them to disk, nor does it read data from the disk. Images are passed directly to DataPipeline during initialisation.

For details of the images data structure and how to create it, see the Multiple-Mask-Augmentation.ipynb Jupyter notebook.

Generators for Keras and PyTorch

If you do not wish to save to disk, you can use a generator (in this case with Keras):

g = p.keras_generator(batch_size=128)
images, labels = next(g)

which returns a batch of images of size 128 and their corresponding labels. Generators return data indefinitely, and can be used to train neural networks with augmented data on the fly.

Alternatively, you can integrate it with PyTorch:

import torchvision
transforms = torchvision.transforms.Compose([
    p.torch_transform(),
    torchvision.transforms.ToTensor(),
])

Main Features

Elastic Distortions

Using elastic distortions, one image can be used to generate many images that are real-world feasible and label preserving:

Input Image Augmented Images
eight_hand_drawn_border eights_border

The input image has a 1 pixel black border to emphasise that you are getting distortions without changing the size or aspect ratio of the original image, and without any black/transparent padding around the newly generated images.

The functionality can be more clearly seen here:

Original Image[1] Random distortions applied
Original Distorted

Perspective Transforms

There are a total of 12 different types of perspective transform available. Four of the most common are shown below.

Tilt Left Tilt Right Tilt Forward Tilt Backward
TiltLeft Original Original Original

The remaining eight types of transform are as follows:

Skew Type 0 Skew Type 1 Skew Type 2 Skew Type 3
Skew0 Skew1 Skew2 Skew3
Skew Type 4 Skew Type 5 Skew Type 6 Skew Type 7
Skew4 Skew5 Skew6 Skew7

Size Preserving Rotations

Rotations by default preserve the file size of the original images:

Original Image Rotated 10 degrees, automatically cropped
Original Rotate

Compared to rotations by other software:

Original Image Rotated 10 degrees
Original Rotate

Size Preserving Shearing

Shearing will also automatically crop the correct area from the sheared image, so that you have an image with no black space or padding.

Original image Shear (x-axis) 20 degrees Shear (y-axis) 20 degrees
Original ShearX ShearY

Compare this to how this is normally done:

Original image Shear (x-axis) 20 degrees Shear (y-axis) 20 degrees
Original ShearX ShearY

Cropping

Cropping can also be handled in a manner more suitable for machine learning image augmentation:

Original image Random crops + resize operation
Original Original

Random Erasing

Random Erasing is a technique used to make models robust to occlusion. This may be useful for training neural networks used in object detection in navigation scenarios, for example.

Original image[2] Random Erasing
Original Original

See the Pipeline.random_erasing() documentation for usage.

Chaining Operations in a Pipeline

With only a few operations, a single image can be augmented to produce large numbers of new, label-preserving samples:

Original image Distortions + mirroring
Original DistortFlipFlop

In the example above, we have applied three operations: first we randomly distort the image, then we flip it horizontally with a probability of 0.5 and then vertically with a probability of 0.5. We then sample from this pipeline 100 times to create 100 new data.

p.random_distortion(probability=1, grid_width=4, grid_height=4, magnitude=8)
p.flip_left_right(probability=0.5)
p.flip_top_bottom(probability=0.5)
p.sample(100)

Tutorial Notebooks

Integration with Keras using Generators

Augmentor can be used as a replacement for Keras' augmentation functionality. Augmentor can create a generator which produces augmented data indefinitely, according to the pipeline you have defined. See the following notebooks for details:

  • Reading images from a local directory, augmenting them at run-time, and using a generator to pass the augmented stream of images to a Keras convolutional neural network, see Augmentor_Keras.ipynb
  • Augmenting data in-memory (in array format) and using a generator to pass these new images to the Keras neural network, see Augmentor_Keras_Array_Data.ipynb

Per-Class Augmentation Strategies

Augmentor allows for pipelines to be defined per class. That is, you can define different augmentation strategies on a class-by-class basis for a given classification problem.

See an example of this in the following Jupyter notebook: Per_Class_Augmentation_Strategy.ipynb

Complete Example

Let's perform an augmentation task on a single image, demonstrating the pipeline and several features of Augmentor.

First import the package and initialise a Pipeline object by pointing it to a directory containing your images:

import Augmentor

p = Augmentor.Pipeline("/home/user/augmentor_data_tests")

Now you can begin adding operations to the pipeline object:

p.rotate90(probability=0.5)
p.rotate270(probability=0.5)
p.flip_left_right(probability=0.8)
p.flip_top_bottom(probability=0.3)
p.crop_random(probability=1, percentage_area=0.5)
p.resize(probability=1.0, width=120, height=120)

Once you have added the operations you require, you can sample images from this pipeline:

p.sample(100)

Some sample output:

Input Image[3] Augmented Images
Original Augmented

The augmented images may be useful for a boundary detection task, for example.

Licence and Acknowledgements

Augmentor is made available under the terms of the MIT Licence. See Licence.md.

[1] Checkerboard image obtained from Wikimedia Commons and is in the public domain: https://commons.wikimedia.org/wiki/File:Checkerboard_pattern.svg

[2] Street view image is in the public domain: http://stokpic.com/project/italian-city-street-with-shoppers/

[3] Skin lesion image obtained from the ISIC Archive:

You can use urllib to obtain the skin lesion image in order to reproduce the augmented images above:

>>> from urllib import urlretrieve
>>> im_url = "https://isic-archive.com:443/api/v1/image/5436e3abbae478396759f0cf/download"
>>> urlretrieve(im_url, "ISIC_0000000.jpg")
('ISIC_0000000.jpg', <httplib.HTTPMessage instance at 0x7f7bd949a950>)

Note: For Python 3, use from urllib.request import urlretrieve.

Logo created at LogoMakr.com

Tests

To run the automated tests, clone the repository and run:

$ py.test -v

from the command line. To view the CI tests that are run after each commit, see https://travis-ci.org/mdbloice/Augmentor.

Citing Augmentor

If you find this package useful and wish to cite it, you can use

Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259

Asciicast

Click the preview below to view a video demonstration of Augmentor in use:

asciicast

Owner
Marcus D. Bloice
Researcher in applied machine learning for healthcare, Medical University of Graz, Austria.
Marcus D. Bloice
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022