A Python package for generating concise, high-quality summaries of a probability distribution

Overview

GoodPoints

A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints is a collection of tools for compressing a distribution more effectively than independent sampling:

  • Given an initial summary of n input points, kernel thinning returns s << n output points with comparable integration error across a reproducing kernel Hilbert space
  • Compress++ reduces the runtime of generic thinning algorithms with minimal loss in accuracy

Installation

To install the goodpoints package, use the following pip command:

pip install goodpoints

Getting started

The primary kernel thinning function is thin in the kt module:

from goodpoints import kt
coreset = kt.thin(X, m, split_kernel, swap_kernel, delta=0.5, seed=123, store_K=False)
    """Returns kernel thinning coreset of size floor(n/2^m) as row indices into X
    
    Args:
      X: Input sequence of sample points with shape (n, d)
      m: Number of halving rounds
      split_kernel: Kernel function used by KT-SPLIT (typically a square-root kernel, krt);
        split_kernel(y,X) returns array of kernel evaluations between y and each row of X
      swap_kernel: Kernel function used by KT-SWAP (typically the target kernel, k);
        swap_kernel(y,X) returns array of kernel evaluations between y and each row of X
      delta: Run KT-SPLIT with constant failure probabilities delta_i = delta/n
      seed: Random seed to set prior to generation; if None, no seed will be set
      store_K: If False, runs O(nd) space version which does not store kernel
        matrix; if True, stores n x n kernel matrix
    """

For example uses, please refer to the notebook examples/kt/run_kt_experiment.ipynb.

The primary Compress++ function is compresspp in the compress module:

from goodpoints import compress
coreset = compress.compresspp(X, halve, thin, g)
    """Returns Compress++(g) coreset of size sqrt(n) as row indices into X

    Args: 
        X: Input sequence of sample points with shape (n, d)
        halve: Function that takes in an (n', d) numpy array Y and returns 
          floor(n'/2) distinct row indices into Y, identifying a halved coreset
        thin: Function that takes in an (n', d) numpy array Y and returns
          2^g sqrt(n') row indices into Y, identifying a thinned coreset
        g: Oversampling factor
    """

For example uses, please refer to the code examples/compress/construct_compresspp_coresets.py.

Examples

Code in the examples directory uses the goodpoints package to recreate the experiments of the following research papers.


Kernel Thinning

@article{dwivedi2021kernel,
  title={Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2105.05842},
  year={2021}
}
  1. The script examples/kt/submit_jobs_run_kt.py reproduces the vignette experiments of Kernel Thinning on a Slurm cluster by executing examples/kt/run_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb, where in the last code block we report the median heuristic based bandwidth parameteters (along with the code to compute it).
  2. After all results have been generated, the notebook plot_results.ipynb can be used to reproduce the figures of Kernel Thinning.

Generalized Kernel Thinning

@article{dwivedi2021generalized,
  title={Generalized Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2110.01593},
  year={2021}
}
  1. The script examples/gkt/submit_gkt_jobs.py reproduces the vignette experiments of Generalized Kernel Thinning on a Slurm cluster by executing examples/gkt/run_generalized_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb.
  2. Once the coresets are generated, examples/gkt/compute_test_function_errors.ipynb can be used to generate integration errors for different test functions.
  3. After all results have been generated, the notebook examples/gkt/plot_gkt_results.ipynb can be used to reproduce the figures of Generalized Kernel Thinning.

Distribution Compression in Near-linear Time

@article{shetti2021distribution,
  title={Distribution Compression in Near-linear Time},
  author={Abhishek Shetty and Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2111.07941},
  year={2021}
}
  1. The notebook examples/compress/script_to_deploy_jobs.ipynb reproduces the experiments of Distribution Compression in Near-linear Time in the following manner: 1a. It generates various coresets and computes their mmds by executing examples/compress/construct_{THIN}_coresets.py for THIN in {compresspp, kt, st, herding} with appropriate parameters, where the flag kt stands for kernel thinning, st stands for standard thinning (choosing every t-th point), and herding refers to kernel herding. 1b. It compute the runtimes of different algorithms by executing examples/compress/run_time.py. 1c. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb. 1d. The notebook currently deploys these jobs on a slurm cluster, but setting deploy_slurm = False in examples/compress/script_to_deploy_jobs.ipynb will submit the jobs as independent python calls on terminal.
  2. After all results have been generated, the notebook examples/compress/plot_compress_results.ipynb can be used to reproduce the figures of Distribution Compression in Near-linear Time.
  3. The script examples/compress/construct_compresspp_coresets.py contains the function recursive_halving that converts a halving algorithm into a thinning algorithm by recursively halving.
  4. The script examples/compress/construct_herding_coresets.py contains the herding function that runs kernel herding algorithm introduced by Yutian Chen, Max Welling, and Alex Smola.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022