LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Overview

Deep-Leafsnap

Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhevsky, et al. in their famous paper ImageNet Classification with Deep Convolutional Neural Networks. Famous models such as AlexNet, VGG-16, ResNet-50, etc. have scored state of the art results on image classfication datasets such as ImageNet and CIFAR-10.

We present an application of CNN's to the task of classifying trees by images of their leaves; specifically all 185 types of trees in the United States. This task proves to be difficult for traditional computer vision methods due to the high number of classes, inconsistency in images, and large visual similarity between leaves.

Kumar, et al. developed a automatic visual recognition algorithm in their 2012 paper Leafsnap: A Computer Vision System for Automatic Plant Species Identification to attempt to solve this problem.

Our model is based off VGG-16 except modified to work with 64x64 size inputs. We achieved state of the art results at the time. Our deep learning approach to this problem further improves the accuracy from 70.8% to 86.2% for the top-1 prediction accuracy and from 96.8% to 98.4% for top-5 prediction accuracy.

Top-1 Accuracy Top-5 Accuracy
Leafsnap 70.8% 96.8%
Deep-Leafsnap 86.2% 98.4%

We noticed that our model failed to recognize specific classes of trees constantly causing our overall accuracy to derease. This is primarily due to the fact that those trees had very small leaves which were hard to preprocess and crop. Our training images were also resized to 64x64 due to limited computational resources. We plan on further improving our data preprocessing and increasing our image size to 224x224 in order to exceed 90% for our top-1 prediction acurracy.

The following goes over the code and how to set it up on your own machine.

Files

  • model.py trains a convolutional neural network on the dataset.
  • vgg.py PyTorch model code for VGG-16.
  • densenet.py PyTorch model code for DenseNet-121.
  • resnet.py PyTorch model code for ResNet.
  • dataset.py creates a new train/test dataset by cropping the leaf and augmenting the data.
  • utils.py helps do some of the hardcore image processing in dataset.py.
  • averagemeter.py helper class which keeps track of a bunch of averages when training.
  • leafsnap-dataset-images.csv is the CSV file corresponding to the dataset.
  • requirements.txt contains the pip requirements to run the code.

Installation

To run the models and code make sure you Python installed.

Install PyTorch by following the directions here.

Clone the repo onto your local machine and cd into the directory.

git clone https://github.com/sujithv28/Deep-Leafsnap.git
cd Deep-Leafsnap

Install all the python dependencies:

pip install -r requirements.txt

Make sure sklearn is updated to the latest version.

pip install --upgrade sklearn

Also make sure you have OpenCV installed either through pip or homebrew. You can check if this works by running and making sure nothing complains:

python
import cv2

Download Leafsnap's image data and extract it to the main directory by running in the directory. Original data can be found here.

wget https://www.dropbox.com/s/dp3sk8wpiu9yszg/data.zip?dl=0
unzip -a data.zip?dl=0
rm data.zip?dl=0

Create the Training and Testing Data

To create the dataset, run

python dataset.py

This cleans the dataset by cropping only neccesary portions of the images containing the leaves and also resizes them to 64x64. If you want to change the image size go to utils.py and change img = misc.imresize(img, (64,64))to any size you want.

Training Model

To train the model, run

python model.py
Owner
Sujith Vishwajith
Computer Science & Math @ University of Maryland
Sujith Vishwajith
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021