[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Overview

Efficient Graph Similarity Computation - (EGSC)

This repo contains the source code and dataset for our paper:

Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
2021 Conference on Neural Information Processing Systems (NeurIPS 2021)
[Paper]

@inproceedings{qin2021slow,
              title={Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation},
              author={Qin, Can and Zhao, Handong and Wang, Lichen and Wang, Huan and Zhang, Yulun and Fu, Yun},
              booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
              year={2021}
            }
    

EGSC Illustration of knowledge distillation to achieve a fast model given a early-fusion model. Such the fast/individual model enables the online inference.

Introduction

Graph Similarity Computation (GSC) is essential to wide-ranging graph appli- cations such as retrieval, plagiarism/anomaly detection, etc. The exact computation of graph similarity, e.g., Graph Edit Distance (GED), is an NP-hard problem that cannot be exactly solved within an adequate time given large graphs. Thanks to the strong representation power of graph neural network (GNN), a variety of GNN-based inexact methods emerged. To capture the subtle difference across graphs, the key success is designing the dense interaction with features fusion at the early stage, which, however, is a trade-off between speed and accuracy. For Slow Learning of graph similarity, this paper proposes a novel early-fusion approach by designing a co-attention-based feature fusion network on multilevel GNN features. To further improve the speed without much accuracy drop, we introduce an efficient GSC solution by distilling the knowledge from the slow early-fusion model to the student one for Fast Inference. Such a student model also enables the offline collection of individual graph embeddings, speeding up the inference time in orders. To address the instability through knowledge transfer, we decompose the dynamic joint embedding into the static pseudo individual ones for precise teacher-student alignment. The experimental analysis on the real-world datasets demonstrates the superiority of our approach over the state-of-the-art methods on both accuracy and efficiency. Particularly, we speed up the prior art by more than 10x on the benchmark AIDS data.

Dataset

We have used the standard dataloader, i.e., ‘GEDDataset’, directly provided in the PyG, whose downloading link can be referred below.

AIDS700nef

LINUX

ALKANE

IMDBMulti

The code takes pairs of graphs for training from an input folder where each pair of graph is stored as a JSON. Pairs of graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]],
 "graph_2":  [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]],
 "labels_1": [2, 2, 2, 2],
 "labels_2": [2, 3, 2, 2, 2],
 "ged": 1}

The **graph_1** and **graph_2** keys have edge list values which descibe the connectivity structure. Similarly, the **labels_1** and **labels_2** keys have labels for each node which are stored as list - positions in the list correspond to node identifiers. The **ged** key has an integer value which is the raw graph edit distance for the pair of graphs.

Requirements

The codebase is implemented in Python 3.6.12. package versions used for development are just below.

matplotlib        3.3.4
networkx          2.4
numpy             1.19.5
pandas            1.1.2
scikit-learn      0.23.2
scipy             1.4.1
texttable         1.6.3
torch             1.6.0
torch-cluster     1.5.9
torch-geometric   1.7.0
torch-scatter     2.0.6
torch-sparse      0.6.9
tqdm              4.60.0

The installation of pytorch-geometric (PyG) please refers to its official tutorial.

File Structure

.
├── README.md
├── LICENSE                            
├── EGSC-T
│   ├── src
│   │    ├── egsc.py 
│   │    ├── layers.py
│   │    ├── main.py
│   │    ├── parser.py        
│   │    └── utils.py                             
│   ├── README.md                      
│   └── train.sh                        
└── GSC_datasets
    ├── AIDS700nef
    ├── ALKANE
    ├── IMDBMulti
    └── LINUX

To Do

- [x] GED Datasets Processing
- [x] Teacher Model Training
- [ ] Student Model Training
- [ ] Knowledge Distillation
- [ ] Online Inference

The remaining implementations are coming soon.

Acknowledgement

We would like to thank the SimGNN and Extended-SimGNN which we used for this implementation.

Owner
PhD student in Northeastern University, Boston, USA
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022