Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Overview

DTI-Sprites

Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper

Check out our paper and webpage for details!

teaser.jpg

If you find this code useful in your research, please cite:

@article{monnier2021dtisprites,
  title={{Unsupervised Layered Image Decomposition into Object Prototypes}},
  author={Monnier, Tom and Vincent, Elliot and Ponce, Jean and Aubry, Mathieu},
  journal={arXiv},
  year={2021},
}

Installation ๐Ÿ‘ท

1. Create conda environment

conda env create -f environment.yml
conda activate dti-sprites

Optional: some monitoring routines are implemented, you can use them by specifying the visdom port in the config file. You will need to install visdom from source beforehand

git clone https://github.com/facebookresearch/visdom
cd visdom && pip install -e .

2. Download non-torchvision datasets

./download_data.sh

This command will download following datasets:

  • Tetrominoes, Multi-dSprites and CLEVR6 (link to the original repo multi-object datasets with raw tfrecords)
  • GTSRB (link to the original dataset page)
  • Weizmann Horse database (link to the original dataset page)
  • Instagram collections associated to #santaphoto and #weddingkiss (link to the original repo with datasets links and descriptions)

NB: it may happen that gdown hangs, if so you can download them by hand with following gdrive links, unzip and move them to the datasets folder:

How to use ๐Ÿš€

1. Launch a training

cuda=gpu_id config=filename.yml tag=run_tag ./pipeline.sh

where:

  • gpu_id is a target cuda device id,
  • filename.yml is a YAML config located in configs folder,
  • run_tag is a tag for the experiment.

Results are saved at runs/${DATASET}/${DATE}_${run_tag} where DATASET is the dataset name specified in filename.yml and DATE is the current date in mmdd format. Some training visual results like sprites evolution and reconstruction examples will be saved. Here is an example from Tetrominoes dataset:

Reconstruction examples

tetro_rec.gif

Sprites evolution and final

tetro_sprites.gif

tetro_sprites_final.png

More visual results are available at https://imagine.enpc.fr/~monniert/DTI-Sprites/extra_results/.

2. Reproduce our quantitative results

To launch 5 runs on Tetrominoes benchmark and reproduce our results:

cuda=gpu_id config=tetro.yml tag=default ./multi_pipeline.sh

Available configs are:

  • Multi-object benchmarks: tetro.yml, dpsrites_gray.yml, clevr6.yml
  • Clustering benchmarks: gtsrb8.yml, svhn.yml
  • Cosegmentation dataset: horse.yml

3. Reproduce our qualitative results on Instagram collections

  1. (skip if already downloaded with script above) Create a santaphoto dataset by running process_insta_santa.sh script. It can take a while to scrape the 10k posts from Instagram.
  2. Launch training with cuda=gpu_id config=instagram.yml tag=santaphoto ./pipeline.sh

That's it!

Top 8 sprites discovered

santa_sprites.jpg

Decomposition examples

santa_rec.jpg

Further information

If you like this project, please check out related works on deep transformations from our group:

Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

ๅ—ๅ˜‰Nanga 36 Dec 21, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022