[CVPR'22] COAP: Learning Compositional Occupancy of People

Related tags

Deep LearningCOAP
Overview

COAP: Compositional Articulated Occupancy of People

Paper | Video | Project Page

teaser figure

This is the official implementation of the CVPR 2022 paper COAP: Learning Compositional Occupancy of People.

Description

This repository provides the official implementation of an implicit human body model (COAP) which implements efficient loss terms for resolving self-intersection and collisions with 3D geometries.

Installation

The necessary requirements are specified in the requrements.txt file. To install COAP, execute:

pip install git+https://github.com/markomih/COAP.git

Note that Pytorch3D may require manuall installation (see instructions here). Alternatively, we provide a conda environment file to install the dependences:

conda env create -f environment.yml
conda activate coap
pip install git+https://github.com/markomih/COAP.git

Optional Dependencies

Install the pyrender package to use the visualization/tutorial scripts and follow the additional instructions specified here if you wish to retrain COAP.

Tutorials

COAP extends the interface of the SMPL-X package (follow its instructions for the usage) via two volumetric loss terms: 1) a loss for resolving self-intersections and 2) a loss for resolving collisions with 3D geometries flexibly represented as point clouds. In the following, we provide a minimal interface to access the COAP's functionalities:

import smplx
from coap import attach_coap

# create a SMPL body and extend the SMPL body via COAP (we support: smpl, smplh, and smplx model types)
model = smplx.create(**smpl_parameters)
attach_coap(model)

smpl_output = model(**smpl_data)  # smpl forward pass
# NOTE: make sure that smpl_output contains the valid SMPL variables (pose parameters, joints, and vertices). 
assert model.joint_mapper is None, 'COAP requires valid SMPL joints as input'

# access two loss functions
model.coap.selfpen_loss(smpl_output)  # self-intersections
model.coap.collision_loss(smpl_output, scan_point_cloud)  # collisions with other geometris

Additionally, we provide two tutorials on how to use these terms to resolve self-intersections and collisions with the environment.

Pretrained Models

A respective pretrained model will be automatically fetched and loaded. All the pretrained models are available on the dev branch inside the ./models directory.

Citation

@inproceedings{Mihajlovic:CVPR:2022,
   title = {{COAP}: Compositional Articulated Occupancy of People},
   author = {Mihajlovic, Marko and Saito, Shunsuke and Bansal, Aayush and Zollhoefer, Michael and Tang, Siyu},
   booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
   month = jun,
   year = {2022}
}

Contact

For questions, please contact Marko Mihajlovic ([email protected]) or raise an issue on GitHub.

Owner
Marko Mihajlovic
PhD Student in Computer Vision and Machine Learning at ETH Zurich
Marko Mihajlovic
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022