[CVPR'22] COAP: Learning Compositional Occupancy of People

Related tags

Deep LearningCOAP
Overview

COAP: Compositional Articulated Occupancy of People

Paper | Video | Project Page

teaser figure

This is the official implementation of the CVPR 2022 paper COAP: Learning Compositional Occupancy of People.

Description

This repository provides the official implementation of an implicit human body model (COAP) which implements efficient loss terms for resolving self-intersection and collisions with 3D geometries.

Installation

The necessary requirements are specified in the requrements.txt file. To install COAP, execute:

pip install git+https://github.com/markomih/COAP.git

Note that Pytorch3D may require manuall installation (see instructions here). Alternatively, we provide a conda environment file to install the dependences:

conda env create -f environment.yml
conda activate coap
pip install git+https://github.com/markomih/COAP.git

Optional Dependencies

Install the pyrender package to use the visualization/tutorial scripts and follow the additional instructions specified here if you wish to retrain COAP.

Tutorials

COAP extends the interface of the SMPL-X package (follow its instructions for the usage) via two volumetric loss terms: 1) a loss for resolving self-intersections and 2) a loss for resolving collisions with 3D geometries flexibly represented as point clouds. In the following, we provide a minimal interface to access the COAP's functionalities:

import smplx
from coap import attach_coap

# create a SMPL body and extend the SMPL body via COAP (we support: smpl, smplh, and smplx model types)
model = smplx.create(**smpl_parameters)
attach_coap(model)

smpl_output = model(**smpl_data)  # smpl forward pass
# NOTE: make sure that smpl_output contains the valid SMPL variables (pose parameters, joints, and vertices). 
assert model.joint_mapper is None, 'COAP requires valid SMPL joints as input'

# access two loss functions
model.coap.selfpen_loss(smpl_output)  # self-intersections
model.coap.collision_loss(smpl_output, scan_point_cloud)  # collisions with other geometris

Additionally, we provide two tutorials on how to use these terms to resolve self-intersections and collisions with the environment.

Pretrained Models

A respective pretrained model will be automatically fetched and loaded. All the pretrained models are available on the dev branch inside the ./models directory.

Citation

@inproceedings{Mihajlovic:CVPR:2022,
   title = {{COAP}: Compositional Articulated Occupancy of People},
   author = {Mihajlovic, Marko and Saito, Shunsuke and Bansal, Aayush and Zollhoefer, Michael and Tang, Siyu},
   booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
   month = jun,
   year = {2022}
}

Contact

For questions, please contact Marko Mihajlovic ([email protected]) or raise an issue on GitHub.

Owner
Marko Mihajlovic
PhD Student in Computer Vision and Machine Learning at ETH Zurich
Marko Mihajlovic
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021