This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Overview

Diverse Motion Stylization (Official)

This is the official Pytorch implementation of this paper.

teaser

Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model
Soomin Park, Deok-Kyeong Jang, and Sung-Hee Lee
In The ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA), 2021
Appeared in: PACM on Computer Graphics and Interactive Techniques (PACMCGIT)

Paper: https://dl.acm.org/doi/pdf/10.1145/3480145
Project: http://motionlab.kaist.ac.kr/?page_id=6301

Abstract: This paper presents a novel deep learning-based framework for translating a motion into various styles within multiple domains. Our framework is a single set of generative adversarial networks that learns stylistic features from a collection of unpaired motion clips with style labels to support mapping between multiple style domains. We construct a spatio-temporal graph to model a motion sequence and employ the spatial-temporal graph convolution networks (ST-GCN) to extract stylistic properties along spatial and temporal dimensions. Through spatial-temporal modeling, our framework shows improved style translation results between significantly different actions and on a long motion sequence containing multiple actions. In addition, we first develop a mapping network for motion stylization that maps a random noise to style, which allows for generating diverse stylization results without using reference motions. Through various experiments, we demonstrate the ability of our method to generate improved results in terms of visual quality, stylistic diversity, and content preservation.

Abstract video

Click the figure to watch the teaser video.
abstract

Requirements

  • matplotlib == 3.4.3
  • numpy == 1.21.3
  • scipy == 1.7.1
  • torch == 1.10.0+cu113

Installation

Clone this repository:

git clone https://github.com/soomean/Diverse-Motion-Stylization.git
cd Diverse-Motion-Stylization

Install the dependencies:

pip install -r requirements.txt

Prepare data

  1. Download the datasets from the following link: https://drive.google.com/drive/folders/1Anr9ouHSnZ80C9u2SB6X0f2Clzs4v7Dp?usp=sharing
  2. Put them in the datasets directory

Download pretrained model

  1. mkdir checkpoints
  2. Download the pretrained model from the following link: https://drive.google.com/drive/folders/1LBNddVo9A18FUz6y4LcA6vmIv3_Bm2QN?usp=sharing
  3. Put it in the checkpoints/[experiment_name] directory

Test pretrained model

python test.py --name [experiment_name] --mode test --load_iter 100000

Train from scratch

python train.py --name [experiment_name]

Supplementary video (full demo)

Click the figure to watch the supplementary video.
supp

Citation

If you find our work useful, please cite our paper as below:

@article{park2021diverse,
  title={Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model},
  author={Park, Soomin and Jang, Deok-Kyeong and Lee, Sung-Hee},
  journal={Proceedings of the ACM on Computer Graphics and Interactive Techniques},
  volume={4},
  number={3},
  pages={1--17},
  year={2021},
  publisher={ACM New York, NY, USA}
}

Acknowledgements

This repository contains code snippets of the following projects:
https://theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing https://github.com/yysijie/st-gcn
https://github.com/clovaai/stargan-v2
https://github.com/DeepMotionEditing/deep-motion-editing

License

This work is licensed under the terms of the MIT license.

Contact

If you have any question, please feel free to contact me ([email protected]).

Owner
Soomin Park
Soomin Park
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023