Repo for flood prediction using LSTMs and HAND

Overview

Abstract

Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in place, decision-makers can take the necessary steps to prevent or at least mitigate the damage caused by floods. Although various flood prediction models exist, a majority of them fail to be fast, reliable, and detailed simultaneously. Our proposed system presents a novel hybrid flood prediction model using Long Short Term Memory(LSTM) for multivariate time series forecasting of water depth based on meteorological conditions and Height Above Nearest Drainage(HAND) to predict river stage in real-time and map the inundated areas for the corresponding water depth using enhanced HAND. Unlike traditional flood forecasting models, this hybrid approach is resource efficient and easy to implement making it highly practicable for real-time flood inundation mapping.

Methodology

The proposed system prioritizes quick development and real-time predictions without compromising on the accuracy. A range of factors affect the occurrences of riverine floods. However, climatological conditions are the major driving force behind them. Factors such as land use/land change and deforestation, although important, only affect flooding in the watershed over a long period of time. Hence, the proposed system used only meteorological conditions and DEM rasters for predicting floods over the next few days.

The relation between weather conditions and flood inundation is simplified by breaking the system into two modules. The first module being estimation of river stage height and the second one being flood inundation mapping. The system uses LSTMs, a data-driven empirical approach, to model the dependence of stage height on meteorological data and HAND, a simplified conceptual approach, to generate flood inundation maps based on the terrain of the watershed and the river stage height predicted by the first module.

Modules :

  1. Inundation Mapping - HAND algorithm to map inundated areas for a given stage height(as proposed in this paper).
  2. River Stage Estimation - Recurring neural networks (LSTMs) to predict the maximum stage height based on weather conditions of the last 3 days.
  3. Deforestation Analysis - Land use classification to identify the changing features of the area over time and identify the areas affected by deforestation.

Datasets

The proposed system uses different data for the three modules. Each of these are collected from different sources and processed separately. The module-wise requirements of data are as follows :

  1. Inundation Mapping:
    1. Digital Elevation Maps from United States Geological Survey
  2. River Stage Estimation:
    1. Meteorological data from National Climatic Data Center
    2. River stage height data from United States Army Corps of Engineers’ river gage data.
  3. Deforestation Analysis:
    1. Satellite images - Landsat 8, Landsat 5 from USGS Earth Explorer

Results

Stage Height Estimation

We tested our proposed system for Cedar Rapids, Iowa. Our experiments showed that features such as vegetation and soil type have little effect on short term flooding and can be disregarded for the prediction module. Testing multiple models showed that single output LSTM models perform better than single shot models. These models are stable upto lead times of 4 days with a Nash-Sutcliffe Efficiency greater than 0.5.

Flood Mapping

Each pixel of the inundation map raster is compared with a reference map created by ground-truthing to identify how many points were incorrectly classified as not flooded. The red areas in the image depict false negatives generated by the proposed system.

Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022