Repo for flood prediction using LSTMs and HAND

Overview

Abstract

Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in place, decision-makers can take the necessary steps to prevent or at least mitigate the damage caused by floods. Although various flood prediction models exist, a majority of them fail to be fast, reliable, and detailed simultaneously. Our proposed system presents a novel hybrid flood prediction model using Long Short Term Memory(LSTM) for multivariate time series forecasting of water depth based on meteorological conditions and Height Above Nearest Drainage(HAND) to predict river stage in real-time and map the inundated areas for the corresponding water depth using enhanced HAND. Unlike traditional flood forecasting models, this hybrid approach is resource efficient and easy to implement making it highly practicable for real-time flood inundation mapping.

Methodology

The proposed system prioritizes quick development and real-time predictions without compromising on the accuracy. A range of factors affect the occurrences of riverine floods. However, climatological conditions are the major driving force behind them. Factors such as land use/land change and deforestation, although important, only affect flooding in the watershed over a long period of time. Hence, the proposed system used only meteorological conditions and DEM rasters for predicting floods over the next few days.

The relation between weather conditions and flood inundation is simplified by breaking the system into two modules. The first module being estimation of river stage height and the second one being flood inundation mapping. The system uses LSTMs, a data-driven empirical approach, to model the dependence of stage height on meteorological data and HAND, a simplified conceptual approach, to generate flood inundation maps based on the terrain of the watershed and the river stage height predicted by the first module.

Modules :

  1. Inundation Mapping - HAND algorithm to map inundated areas for a given stage height(as proposed in this paper).
  2. River Stage Estimation - Recurring neural networks (LSTMs) to predict the maximum stage height based on weather conditions of the last 3 days.
  3. Deforestation Analysis - Land use classification to identify the changing features of the area over time and identify the areas affected by deforestation.

Datasets

The proposed system uses different data for the three modules. Each of these are collected from different sources and processed separately. The module-wise requirements of data are as follows :

  1. Inundation Mapping:
    1. Digital Elevation Maps from United States Geological Survey
  2. River Stage Estimation:
    1. Meteorological data from National Climatic Data Center
    2. River stage height data from United States Army Corps of Engineers’ river gage data.
  3. Deforestation Analysis:
    1. Satellite images - Landsat 8, Landsat 5 from USGS Earth Explorer

Results

Stage Height Estimation

We tested our proposed system for Cedar Rapids, Iowa. Our experiments showed that features such as vegetation and soil type have little effect on short term flooding and can be disregarded for the prediction module. Testing multiple models showed that single output LSTM models perform better than single shot models. These models are stable upto lead times of 4 days with a Nash-Sutcliffe Efficiency greater than 0.5.

Flood Mapping

Each pixel of the inundation map raster is compared with a reference map created by ground-truthing to identify how many points were incorrectly classified as not flooded. The red areas in the image depict false negatives generated by the proposed system.

This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023