Repo for flood prediction using LSTMs and HAND

Overview

Abstract

Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in place, decision-makers can take the necessary steps to prevent or at least mitigate the damage caused by floods. Although various flood prediction models exist, a majority of them fail to be fast, reliable, and detailed simultaneously. Our proposed system presents a novel hybrid flood prediction model using Long Short Term Memory(LSTM) for multivariate time series forecasting of water depth based on meteorological conditions and Height Above Nearest Drainage(HAND) to predict river stage in real-time and map the inundated areas for the corresponding water depth using enhanced HAND. Unlike traditional flood forecasting models, this hybrid approach is resource efficient and easy to implement making it highly practicable for real-time flood inundation mapping.

Methodology

The proposed system prioritizes quick development and real-time predictions without compromising on the accuracy. A range of factors affect the occurrences of riverine floods. However, climatological conditions are the major driving force behind them. Factors such as land use/land change and deforestation, although important, only affect flooding in the watershed over a long period of time. Hence, the proposed system used only meteorological conditions and DEM rasters for predicting floods over the next few days.

The relation between weather conditions and flood inundation is simplified by breaking the system into two modules. The first module being estimation of river stage height and the second one being flood inundation mapping. The system uses LSTMs, a data-driven empirical approach, to model the dependence of stage height on meteorological data and HAND, a simplified conceptual approach, to generate flood inundation maps based on the terrain of the watershed and the river stage height predicted by the first module.

Modules :

  1. Inundation Mapping - HAND algorithm to map inundated areas for a given stage height(as proposed in this paper).
  2. River Stage Estimation - Recurring neural networks (LSTMs) to predict the maximum stage height based on weather conditions of the last 3 days.
  3. Deforestation Analysis - Land use classification to identify the changing features of the area over time and identify the areas affected by deforestation.

Datasets

The proposed system uses different data for the three modules. Each of these are collected from different sources and processed separately. The module-wise requirements of data are as follows :

  1. Inundation Mapping:
    1. Digital Elevation Maps from United States Geological Survey
  2. River Stage Estimation:
    1. Meteorological data from National Climatic Data Center
    2. River stage height data from United States Army Corps of Engineers’ river gage data.
  3. Deforestation Analysis:
    1. Satellite images - Landsat 8, Landsat 5 from USGS Earth Explorer

Results

Stage Height Estimation

We tested our proposed system for Cedar Rapids, Iowa. Our experiments showed that features such as vegetation and soil type have little effect on short term flooding and can be disregarded for the prediction module. Testing multiple models showed that single output LSTM models perform better than single shot models. These models are stable upto lead times of 4 days with a Nash-Sutcliffe Efficiency greater than 0.5.

Flood Mapping

Each pixel of the inundation map raster is compared with a reference map created by ground-truthing to identify how many points were incorrectly classified as not flooded. The red areas in the image depict false negatives generated by the proposed system.

Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022