A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

Overview

PokeGAN

A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

Dataset

The model has been trained on dataset that includes 819 pokémon.
You can download dataset from this kaggle link.

Dependencies

I have used the following versions for code work:

  • python==3.8.8
  • tensorflow==2.4.1
  • tensorflow-gpu==2.4.1
  • numpy==1.19.1
  • h5py==2.10.0

Note

There are several difficulties in pokemon generation using GAN :

  • The difficulty of GAN training is well known; changing a hyperparameter can greatly change the results.
  • The dataset size is too small! 819 different pokemon images are not enough. For this reason, I applied data augmentation on the data; these are the transformations applied :
img_transf = tf.keras.Sequential([
            	tf.keras.layers.experimental.preprocessing.RandomContrast(factor=(0.05, 0.15)),
                image_aug.RandomBrightness(brightness_delta=(-0.15, 0.15)),
                image_aug.PowerLawTransform(gamma=(0.8,1.2)),
                image_aug.RandomSaturation(sat=(0, 2)),
                image_aug.RandomHue(hue=(0, 0.15)),
                tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal"),
	    	tf.keras.layers.experimental.preprocessing.RandomTranslation(height_factor=(-0.10, 0.10), width_factor=(-0.10, 0.10)),
		tf.keras.layers.experimental.preprocessing.RandomZoom(height_factor=(-0.10, 0.10), width_factor=(-0.10, 0.10)),
		tf.keras.layers.experimental.preprocessing.RandomRotation(factor=(-0.10, 0.10))])
  • StyleGAN training is very expensive! I trained the model starting from a 4x4 resolution up to the final resolution of 256x256. The model was trained for 8 days using a Tesla V100 32GB SXM2.
    To get better results you need to use higher resolutions and train for longer time.

Results

These are some examples of new pokémon generated by the model :

New Generated Pokémon

More results

You can see hundreds of new pokemon here.
I repeat again it : to get better results (better details in pokemon) is necessary to train for more time.

References

This code implementation is inspired by the unofficial keras implementation of styleGAN.

Owner
I love computer vision. I love artificial intelligence. Machine Learning and Big Data master's degree student.
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022