An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Overview

Deep Permutation Equivariant Structure from Motion

Paper | Poster

This repository contains an implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

The paper proposes a neural network architecture that, given a set of point tracks in multiple images of a static scene, recovers both the camera parameters and a (sparse) scene structure by minimizing an unsupervised reprojection loss. The method does not require initialization of camera parameters or 3D point locations and is implemented for two setups: (1) single scene reconstruction and (2) learning from multiple scenes.

Table of Contents


Setup

This repository is implemented with python 3.8, and in order to run bundle adjustment requires linux.

Folders

The repository should contain the following folders:

Equivariant-SFM
├── bundle_adjustment
├── code
├── datasets
│   ├── Euclidean
│   └── Projective
├── environment.yml
├── results

Conda envorinment

Create the environment using one of the following commands:

conda create -n ESFM -c pytorch -c conda-forge -c comet_ml -c plotly  -c fvcore -c iopath -c bottler -c anaconda -c pytorch3d python=3.8 pytorch cudatoolkit=10.2 torchvision pyhocon comet_ml plotly pandas opencv openpyxl xlrd cvxpy fvcore iopath nvidiacub pytorch3d eigen cmake glog gflags suitesparse gxx_linux-64 gcc_linux-64 dask matplotlib
conda activate ESFM

Or:

conda env create -f environment.yml
conda activate ESFM

And follow the bundle adjustment instructions.

Data

Download the data from this link.

The model can work on both calibrated camera setting (euclidean reconstruction) and on uncalibrated cameras (projective reconstruction).

The input for the model is an observed points matrix of size [m,n,2] where the entry [i,j] is a 2D image point that corresponds to camera (image) number i and 3D point (point track) number j.

In practice we use a correspondence matrix representation of size [2*m,n], where the entries [2*i,j] and [2*i+1,j] form the [i,j] image point.

For the calibrated setting, the input must include m calibration matrices of size [3,3].

How to use

Optimization

For a calibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Euc.conf

For an uncalibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Proj.conf

The following examples are for the calibrated settings but are clearly the same for the uncalibrated setting.

You can choose which scene to optimize either by changing the config file in the field 'dataset.scan' or from the command line:

python single_scene_optimization.py --conf Optimization_Euc.conf --scan [scan_name]

Similarly, you can override any value of the config file from the command line. For example, to change the number of training epochs and the evaluation frequency use:

python single_scene_optimization.py --conf Optimization_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Learning

To run the learning setup run:

python multiple_scenes_learning.py --conf Learning_Euc.conf

Or for the uncalibrated setting:

python multiple_scenes_learning.py --conf Learning_Proj.conf

To override some parameters from the config file, you can either change the file itself or use the same command as in the optimization setting:

python multiple_scenes_learning.py --conf Learning_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Citation

If you find this work useful please cite:

@InProceedings{Moran_2021_ICCV,
    author    = {Moran, Dror and Koslowsky, Hodaya and Kasten, Yoni and Maron, Haggai and Galun, Meirav and Basri, Ronen},
    title     = {Deep Permutation Equivariant Structure From Motion},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {5976-5986}
}
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022