An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Overview

Deep Permutation Equivariant Structure from Motion

Paper | Poster

This repository contains an implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

The paper proposes a neural network architecture that, given a set of point tracks in multiple images of a static scene, recovers both the camera parameters and a (sparse) scene structure by minimizing an unsupervised reprojection loss. The method does not require initialization of camera parameters or 3D point locations and is implemented for two setups: (1) single scene reconstruction and (2) learning from multiple scenes.

Table of Contents


Setup

This repository is implemented with python 3.8, and in order to run bundle adjustment requires linux.

Folders

The repository should contain the following folders:

Equivariant-SFM
├── bundle_adjustment
├── code
├── datasets
│   ├── Euclidean
│   └── Projective
├── environment.yml
├── results

Conda envorinment

Create the environment using one of the following commands:

conda create -n ESFM -c pytorch -c conda-forge -c comet_ml -c plotly  -c fvcore -c iopath -c bottler -c anaconda -c pytorch3d python=3.8 pytorch cudatoolkit=10.2 torchvision pyhocon comet_ml plotly pandas opencv openpyxl xlrd cvxpy fvcore iopath nvidiacub pytorch3d eigen cmake glog gflags suitesparse gxx_linux-64 gcc_linux-64 dask matplotlib
conda activate ESFM

Or:

conda env create -f environment.yml
conda activate ESFM

And follow the bundle adjustment instructions.

Data

Download the data from this link.

The model can work on both calibrated camera setting (euclidean reconstruction) and on uncalibrated cameras (projective reconstruction).

The input for the model is an observed points matrix of size [m,n,2] where the entry [i,j] is a 2D image point that corresponds to camera (image) number i and 3D point (point track) number j.

In practice we use a correspondence matrix representation of size [2*m,n], where the entries [2*i,j] and [2*i+1,j] form the [i,j] image point.

For the calibrated setting, the input must include m calibration matrices of size [3,3].

How to use

Optimization

For a calibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Euc.conf

For an uncalibrated scene optimization run:

python single_scene_optimization.py --conf Optimization_Proj.conf

The following examples are for the calibrated settings but are clearly the same for the uncalibrated setting.

You can choose which scene to optimize either by changing the config file in the field 'dataset.scan' or from the command line:

python single_scene_optimization.py --conf Optimization_Euc.conf --scan [scan_name]

Similarly, you can override any value of the config file from the command line. For example, to change the number of training epochs and the evaluation frequency use:

python single_scene_optimization.py --conf Optimization_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Learning

To run the learning setup run:

python multiple_scenes_learning.py --conf Learning_Euc.conf

Or for the uncalibrated setting:

python multiple_scenes_learning.py --conf Learning_Proj.conf

To override some parameters from the config file, you can either change the file itself or use the same command as in the optimization setting:

python multiple_scenes_learning.py --conf Learning_Euc.conf --external_params "train:num_of_epochs:1e+5,train:eval_intervals:100"

Citation

If you find this work useful please cite:

@InProceedings{Moran_2021_ICCV,
    author    = {Moran, Dror and Koslowsky, Hodaya and Kasten, Yoni and Maron, Haggai and Galun, Meirav and Basri, Ronen},
    title     = {Deep Permutation Equivariant Structure From Motion},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {5976-5986}
}
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022