Object detection on multiple datasets with an automatically learned unified label space.

Overview

Simple multi-dataset detection

An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of ECCV 2020 Robust Vision Challenges.

Simple multi-dataset detection,
Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl,
arXiv technical report (arXiv 2102.13086)

Contact: [email protected]. Any questions or discussions are welcomed!

Abstract

How do we build a general and broad object detection system? We use all labels of all concepts ever annotated. These labels span diverse datasets with potentially inconsistent taxonomies. In this paper, we present a simple method for training a unified detector on multiple large-scale datasets. We use dataset-specific training protocols and losses, but share a common detection architecture with dataset-specific outputs. We show how to automatically integrate these dataset-specific outputs into a common semantic taxonomy. In contrast to prior work, our approach does not require manual taxonomy reconciliation. Our multi-dataset detector performs as well as dataset-specific models on each training domain, but generalizes much better to new unseen domains. Entries based on the presented methodology ranked first in the object detection and instance segmentation tracks of the ECCV 2020 Robust Vision Challenge.

Features at a glance

  • We trained a unified object detector on 4 large-scale detection datasets: COCO, Objects365, OpenImages, and Mapillary, with state-of-the-art performance on all of them.

  • The model predicts class labels in a learned unified label space.

  • The model can be directly used to test on novel datasets outside the training datasets.

  • In this repo, we also provide state-of-the-art baselines for Objects365 and OpenImages.

Main results

COCO test-challenge OpenImages public test Mapillary test Objects365 val
52.9 60.6 25.3 33.7

Results are obtained using a Cascade-RCNN with ResNeSt200 trained in an 8x schedule.

  • Unified model vs. ensemble of dataset-specific models with known test domains.
COCO Objects365 OpenImages mean.
Unified 45.4 24.4 66.0 45.3
Dataset-specific models 42.5 24.9 65.7 44.4

Results are obtained using a Cascade-RCNN with Res50 trained in an 8x schedule.

  • Zero-shot cross dataset evaluation
VOC VIPER CityScapes ScanNet WildDash CrowdHuman KITTI mean
Unified 82.9 21.3 52.6 29.8 34.7 70.7 39.9 47.3
Oracle models 80.3 31.8 54.6 44.7 - 80.0 - -

Results are obtained using a Cascade-RCNN with Res50 trained in an 8x schedule.

More models can be found in our MODEL ZOO.

Installation

Our project is developed on detectron2. Please follow the official detectron2 installation. All our code is under projects/UniDet/. In theory, you should be able to copy-paste projects/UniDet/ to the latest detectron2 release or your own detectron2 repo to run our project. There might be API changes in future detectron2 releases that make it incompatible.

Demo

We use the same inference API as detectorn2. To run inference on an image folder using our pretrained model, run

python projects/UniDet/demo/demo.py --config-file projects/UniDet/configs/Unified_learned_OCIM_R50_6x+2x.yaml --input images/*.jpg --opts MODEL.WEIGHTS models/Unified_learned_OCIM_R50_6x+2x.pth

If setup correctly, the output should look like:

*The sample image is from WildDash dataset.

Note that the model predicts all labels in its label hierarchy tree (for example, both vehicle and car for a car), following the protocol in OpenImages.

Benchmark evaluation and training

After installation, follow the instructions in DATASETS.md to setup the (many) datasets. Then check REPRODUCE.md to reproduce the results in the paper.

License

All our code under projects/Unidet/ is under Apache 2.0 license. The code from detectron2 follows the original Apache 2.0 license.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2021simple,
  title={Simple multi-dataset detection},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  booktitle={arXiv preprint arXiv:2102.13086},
  year={2021}
}
Owner
Xingyi Zhou
CS Ph.D. student at UT Austin.
Xingyi Zhou
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022