The repository offers the official implementation of our paper in PyTorch.

Related tags

Deep LearningCIT
Overview

Cloth Interactive Transformer (CIT)

Cloth Interactive Transformer for Virtual Try-On
Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Philip H.S. Torr5, Nicu Sebe16.
1University of Trento, Italy, 2Peng Cheng Laboratory, China, 3Peking University Shenzhen Graduate School, China,
4Inception Institute of AI, UAE, 5University of Oxford, UK, 6Huawei Research Ireland, Ireland.

The repository offers the official implementation of our paper in PyTorch. The code and pre-trained models are tested with pytorch 0.4.1, torchvision 0.2.1, opencv-python 4.1, and pillow 5.4 (Python 3.6).

In the meantime, check out our recent paper XingGAN and XingVTON.

Usage

This pipeline is a combination of consecutive training and testing of Cloth Interactive Transformer (CIT) Matching block based GMM and CIT Reasoning block based TOM. GMM generates the warped clothes according to the target human. Then, TOM blends the warped clothes outputs from GMM into the target human properties, to generate the final try-on output.

  1. Install the requirements
  2. Download/Prepare the dataset
  3. Train the CIT Matching block based GMM network
  4. Get warped clothes for training set with trained GMM network, and copy warped clothes & masks inside data/train directory
  5. Train the CIT Reasoning block based TOM network
  6. Test CIT Matching block based GMM for testing set
  7. Get warped clothes for testing set, copy warped clothes & masks inside data/test directory
  8. Test CIT Reasoning block based TOM testing set

Installation

This implementation is built and tested in PyTorch 0.4.1. Pytorch and torchvision are recommended to install with conda: conda install pytorch=0.4.1 torchvision=0.2.1 -c pytorch

For all packages, run pip install -r requirements.txt

Data Preparation

For training/testing VITON dataset, our full and processed dataset is available here: https://1drv.ms/u/s!Ai8t8GAHdzVUiQQYX0azYhqIDPP6?e=4cpFTI. After downloading, unzip to your own data directory ./data/.

Training

Run python train.py with your specific usage options for GMM and TOM stage.

For example, GMM: python train.py --name GMM --stage GMM --workers 4 --save_count 5000 --shuffle. Then run test.py for GMM network with the training dataset, which will generate the warped clothes and masks in "warp-cloth" and "warp-mask" folders inside the "result/GMM/train/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/train" folder.

Run TOM stage, python train.py --name TOM --stage TOM --workers 4 --save_count 5000 --shuffle

Evaluation

We adopt four evaluation metrics in our work for evaluating the performance of the proposed XingVTON. There are Jaccard score (JS), structral similarity index measure (SSIM), learned perceptual image patch similarity (LPIPS), and Inception score (IS).

Note that JS is used for the same clothing retry-on cases (with ground truth cases) in the first geometric matching stage, while SSIM and LPIPS are used for the same clothing retry-on cases (with ground truth cases) in the second try-on stage. In addition, IS is used for different clothing try-on (where no ground truth is available).

For JS

  • Step1: Runpython test.py --name GMM --stage GMM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/GMM_pretrained/gmm_final.pth then the parsed segmentation area for current upper clothing is used as the reference image, accompanied with generated warped clothing mask then:
  • Step2: Runpython metrics/getJS.py

For SSIM

After we run test.py for GMM network with the testibng dataset, the warped clothes and masks will be generated in "warp-cloth" and "warp-mask" folders inside the "result/GMM/test/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/test" folder. Then:

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth Then the original target human image is used as the reference image, accompanied with the generated retry-on image then:
  • Step2: Run python metrics/getSSIM.py

For LPIPS

  • Step1: You need to creat a new virtual enviriment, then install PyTorch 1.0+ and torchvision;
  • Step2: Run sh metrics/PerceptualSimilarity/testLPIPS.sh;

For IS

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth
  • Step2: Run python metrics/getIS.py

Inference

The pre-trained models are provided here. Download the pre-trained models and put them in this project (./checkpoints) Then just run the same step as Evaluation to test/inference our model.

Acknowledgements

This source code is inspired by CP-VTON, CP-VTON+. We are extremely grateful for their public implementation.

Citation

If you use this code for your research, please consider giving a star and citing our paper 🦖 :

CIT

@article{ren2021cloth,
  title={Cloth Interactive Transformer for Virtual Try-On},
  author={Ren, Bin and Tang, Hao and Meng, Fanyang and Ding, Runwei and Shao, Ling and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2104.05519},
  year={2021}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Bin Ren ([email protected]).

Owner
Bingoren
Bingoren
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022