Improving Object Detection by Estimating Bounding Box Quality Accurately

Related tags

Deep LearningLQM
Overview

Improving Object Detection by Estimating Bounding Box Quality Accurately

Abstract

Object detection aims to locate and classify object instances in images. Therefore, the object detection model is generally implemented with two parallel branches to optimize localization and classification. After training the detection model, we should select the best bounding box of each class among a number of estimations for reliable inference. Generally, NMS (Non Maximum Suppression) is operated to suppress low-quality bounding boxes by referring to classification scores or center-ness scores. However, since the quality of bounding boxes is not considered, the low-quality bounding boxes can be accidentally selected as a positive bounding box for the corresponding class. We believe that this misalignment between two parallel tasks causes degrading of the object detection performance. In this paper, we propose a method to estimate bounding boxes' quality using four-directional Gaussian quality modeling, which leads the consistent results between two parallel branches. Extensive experiments on the MS COCO benchmark show that the proposed method consistently outperforms the baseline (FCOS). Eventually, our best model offers the state-of-the-art performance by achieving 48.9% in AP. We also confirm the efficiency of the method by comparing the number of parameters and computational overhead.

Overall Architecture

Implementation Details

We implement our detection model on top of MMDetection (v2.6), an open source object detection toolbox. If not specified separately, the default settings of FCOS implementation are not changed. We train and validate our network on four RTX TITAN GPUs in the environment of Pytorch v1.6 and CUDA v10.2.

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Installation


  1. Clone the this repository.

    git clone https://github.com/sanghun3819/LQM.git
    cd LQM
  2. Create a conda virtural environment and install dependencies.

    conda env create -f environment.yml
  3. Activate conda environment

    conda activate lqm
  4. Install build requirements and then install MMDetection.

    pip install -r requirements/build.txt
    pip install -v -e .

Preparing MS COCO dataset


bash download_coco.sh

Preparing Pre-trained model weights


bash download_weights.sh

Train


# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with COCO dataset in 'data/coco/'

./tools/dist_train.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py 4 --validate

Inference


./tools/dist_test.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py work_dirs/uncertainty_guide_r50_fpn_1x/epoch_12.pth 4 --eval bbox

Image demo using pretrained model weight


# Result will be saved under the demo directory of this project (detection_result.jpg)
# config, checkpoint, source image path are needed (If you need pre-trained weights, you can download them from provided google drive link)
# score threshold is optional

python demo/LQM_image_demo.py --config configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py --checkpoint work_dirs/pretrained/LQM_r50_fpn_1x.pth --img data/coco/test2017/000000011245.jpg --score-thr 0.3

Models


For your convenience, we provide the following trained models. All models are trained with 16 images in a mini-batch with 4 GPUs.

Model Multi-scale training AP (minival) Link
LQM_R50_FPN_1x No 40.0 Google
LQM_R101_FPN_2x Yes 44.8 Google
LQM_R101_dcnv2_FPN_2x Yes 47.4 Google
LQM_X101_FPN_2x Yes 47.2 Google
LQM_X101_dcnv2_FPN_2x Yes 48.9 Google
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023