Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Overview

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei Liu.

Project | Paper | Demo

We propose Pose-Controllable Audio-Visual System (PC-AVS), which achieves free pose control when driving arbitrary talking faces with audios. Instead of learning pose motions from audios, we leverage another pose source video to compensate only for head motions. The key is to devise an implicit low-dimension pose code that is free of mouth shape or identity information. In this way, audio-visual representations are modularized into spaces of three key factors: speech content, head pose, and identity information.

Requirements

  • Python 3.6 and Pytorch 1.3.0 are used. Basic requirements are listed in the 'requirements.txt'.
pip install -r requirements.txt

Quick Start: Generate Demo Results

  • Download the pre-trained checkpoints.

  • Create the default folder ./checkpoints and unzip the demo.zip at ./checkpoints/demo. There should be a 5 pths in it.

  • Unzip all *.zip files within the misc folder.

  • Run the demo scripts:

bash experiments/demo_vox.sh
  • The --gen_video argument is by default on, ffmpeg >= 4.2.0 is required to use this flag in linux systems. All frames along with an avconcat.mp4 video file will be saved in the ./id_517600055_pose_517600078_audio_681600002/results folder in the following form:

From left to right are the reference input, the generated results, the pose source video and the synced original video with the driving audio.

Prepare Testing Meta Data

  • Automatic VoxCeleb2 Data Formulation

The inference code experiments/demo.sh refers to ./misc/demo.csv for testing data paths. In linux systems, any applicable csv file can be created automatically by running:

python scripts/prepare_testing_files.py

Then modify the meta_path_vox in experiments/demo_vox.sh to './misc/demo2.csv' and run

bash experiments/demo_vox.sh

An additional result should be seen saved.

  • Metadata Details

Detailedly, in scripts/prepare_testing_files.py there are certain flags which enjoy great flexibility when formulating the metadata:

  1. --src_pose_path denotes the driving pose source path. It can be an mp4 file or a folder containing frames in the form of %06d.jpg starting from 0.

  2. --src_audio_path denotes the audio source's path. It can be an mp3 audio file or an mp4 video file. If a video is given, the frames will be automatically saved in ./misc/Mouth_Source/video_name, and disables the --src_mouth_frame_path flag.

  3. --src_mouth_frame_path. When --src_audio_path is not a video path, this flags could provide the folder containing the video frames synced with the source audio.

  4. --src_input_path is the path to the input reference image. When the path is a video file, we will convert it to frames.

  5. --csv_path the path to the to-be-saved metadata.

You can manually modify the metadata csv file or add lines to it according to the rules defined in the scripts/prepare_testing_files.py file or the dataloader data/voxtest_dataset.py.

We provide a number of demo choices in the misc folder, including several ones used in our video. Feel free to rearrange them even across folders. And you are welcome to record audio files by yourself.

  • Self-Prepared Data Processing

Our model handles only VoxCeleb2-like cropped data, thus pre-processing is needed for self-prepared data.

  • Coming soon

Train Your Own Model

  • Coming soon

License and Citation

The usage of this software is under CC-BY-4.0.

@InProceedings{zhou2021pose,
author = {Zhou, Hang and Sun, Yasheng and Wu, Wayne and Loy, Chen Change and Wang, Xiaogang and Liu, Ziwei},
title = {Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}

Acknowledgement

Owner
Hang_Zhou
Ph.D. Candidate @ MMLab-CUHK
Hang_Zhou
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022