YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

Overview

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

In our recent paper we propose the YourTTS model. YourTTS brings the power of a multilingual approach to the task of zero-shot multi-speaker TTS. Our method builds upon the VITS model and adds several novel modifications for zero-shot multi-speaker and multilingual training. We achieved state-of-the-art (SOTA) results in zero-shot multi-speaker TTS and results comparable to SOTA in zero-shot voice conversion on the VCTK dataset. Additionally, our approach achieves promising results in a target language with a single-speaker dataset, opening possibilities for zero-shot multi-speaker TTS and zero-shot voice conversion systems in low-resource languages. Finally, it is possible to fine-tune the YourTTS model with less than 1 minute of speech and achieve state-of-the-art results in voice similarity and with reasonable quality. This is important to allow synthesis for speakers with a very different voice or recording characteristics from those seen during training.

Audios samples

Visit our website for audio samples.

Implementation

All of our experiments were implemented on the Coqui TTS repo. (Still a PR).

Colab Demos

Demo URL
Zero-Shot TTS link
Zero-Shot VC link

Checkpoints

All the released checkpoints are licensed under CC BY-NC-ND 4.0

Model URL
Speaker Encoder link
Exp 1. YourTTS-EN(VCTK) link
Exp 1. YourTTS-EN(VCTK) + SCL link
Exp 2. YourTTS-EN(VCTK)-PT link
Exp 2. YourTTS-EN(VCTK)-PT + SCL link
Exp 3. YourTTS-EN(VCTK)-PT-FR link
Exp 3. YourTTS-EN(VCTK)-PT-FR SCL link
Exp 4. YourTTS-EN(VCTK+LibriTTS)-PT-FR SCL link

Results replicability

To insure replicability, we make the audios used to generate the MOS available here. In addition, we provide the MOS for each audio here.

To re-generate our MOS results, follow the instructions here. To predict the test sentences and generate the SECS, please use the Jupyter Notebooks available here.

Comments
  • Languages other than PT, FR, EN

    Languages other than PT, FR, EN

    As YourTTS is multilingual TTS, I think that by training datasets, it seems that other languages might be available. However, YourTTS's checkpoint structure seems distinctive. Is there any training procedures that I can refer?

    opened by papercore-dev 7
  • Issue with Input type and weight type should be the same

    Issue with Input type and weight type should be the same

    Hi,

    I am trying to train YourTTS on my own dataset. So I followed your helpful guide with the latest stable version of Coqui TTS (0.8.0).

    After computing the embeddings (on GPU) without issue, I run into this RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same.

    I have already trained a VITS model with this dataset so everything is already set up. I understood that input Tensor resides on GPU whereas weight Tensor resides on CPU but how can I solve this ? Should I downgrade to CoquiTTS 0.6.2 ?

    Here is the full traceback :

    File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1533, in fit
        self._fit()
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1517, in _fit
        self.train_epoch()
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1282, in train_epoch
        _, _ = self.train_step(batch, batch_num_steps, cur_step, loader_start_time)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 1135, in train_step
        outputs, loss_dict_new, step_time = self._optimize(
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 996, in _optimize
        outputs, loss_dict = self._model_train_step(batch, model, criterion, optimizer_idx=optimizer_idx)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/trainer/trainer.py", line 954, in _model_train_step
        return model.train_step(*input_args)
      File "/home/caraduf/YourTTS/TTS/TTS/tts/models/vits.py", line 1250, in train_step
        outputs = self.forward(
      File "/home/caraduf/YourTTS/TTS/TTS/tts/models/vits.py", line 1049, in forward
        pred_embs = self.speaker_manager.encoder.forward(wavs_batch, l2_norm=True)
      File "/home/caraduf/YourTTS/TTS/TTS/encoder/models/resnet.py", line 169, in forward
        x = self.torch_spec(x)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/container.py", line 139, in forward
        input = module(input)
      File "/home/caraduf/YourTTS/yourtts_env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/caraduf/YourTTS/TTS/TTS/encoder/models/base_encoder.py", line 22, in forward
        return torch.nn.functional.conv1d(x, self.filter).squeeze(1)
    RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    

    Thanks for helping me out!

    opened by Ca-ressemble-a-du-fake 6
  •  Speaker Encoder train on new language

    Speaker Encoder train on new language

    Hi, Can you elaborate about the source of where you get Speaker Encoder, and how do you train it with additional languages? How do you use model Wav2Vec which trained from fairseq? on config_se.json "run_description": "resnet speaker encoder trained with commonvoice all languages dev and train, Voxceleb 1 dev and Voxceleb 2 dev". Which languages include in this CV? which version of CV in this training? Thanks.

    opened by ikcla 5
  • YourTTS_zeroshot_VC_demo.ipynb

    YourTTS_zeroshot_VC_demo.ipynb

    Hi! I am trying to run YourTTS_zeroshot_VC_demo.ipynb and there seems to be access changes to the file best_model.pth.tar I am downloading it right now and I will manually upload it, so that I can run the notebook, but could you kindly fix the access rights so that others could easily run it like it was before. Thank you in advance! image

    opened by stalevna 5
  • train our own voice model

    train our own voice model

    Hi ,

    I have found your repo very interesting. So, I am trying out this. I am curious to know about training our voice files to creating checkpoint without involvement of text(As i have seen in previous issues to take reference of coqui model training) and without altering config.json. Can you please guide us how to proceed on this further.

    opened by chandrakanthlns 4
  • Train YourTTS on another language

    Train YourTTS on another language

    Good day!

    I have several questions, could you please help?

    Do I understand correctly that if I want to train the model on another language it is better to fine tune this model (YourTTS-EN(VCTK+LibriTTS)-PT-FR SCL): https://drive.google.com/drive/folders/15G-QS5tYQPkqiXfAdialJjmuqZV0azQV Or it is better to use other checkpoints.

    How many hours of audio is needed to have appropriate quality?

    I planned to use Common Voice Corpus to fine-tune the model on a new language, however, the audio format is mp3 not wav. Do I need to convert all the audio files or I can use mp3 format. If yes, how?

    Thank you for your time in advance!

    opened by annaklyueva 4
  • Select Speakers for Zero Shot TTS

    Select Speakers for Zero Shot TTS

    Hi ,

    Firstly great work on the project with time trying to understand the repo with more clarity. Wanted to know how can I select different speakers for different sections of text .

    Thanks in advance.

    opened by dipanjannC 4
  • From which version does coqui TTS starts supporting voice conversions and cloning?

    From which version does coqui TTS starts supporting voice conversions and cloning?

    Hi @Edresson, I am fairly new into the feild so please forgive for naive question. I am trying to use voice cloning feature. I trained a model on coqui-ai version 0.6 and in that installed environment. And I am using the command below to get the cloning done but it gives error that tts command does not expect "reference_wav" tts --model_path trained_model/best_model.pth.tar --config_path trained_model/config.json --speaker_idx "icici" --out_path output.wav --reference_wav target_content/asura_10secs.wav which might be because it did not support voice conversion then. Can you please confirm? Also, the model trained on version 0.6 doesn't run with latest version and ends up in dimension mismatch error which I am assuming due to model structure change probably. Please shed some light on this, It'll be really helpful.

    opened by tieincred 3
  • finetune VC on my voice

    finetune VC on my voice

    I would like to finetune yourTTS voice conversion on my own voice, and compare it to the zero-shot model. Could you provide the finetuning procedure for VC?

    opened by odeliazavlianovSC 3
  • Exp 1. YourTTS-EN(VCTK) + SCL(speaker encoder layers are not initialized )

    Exp 1. YourTTS-EN(VCTK) + SCL(speaker encoder layers are not initialized )

    I tried to run an experiment similar to Exp 1. YourTTS-EN(VCTK) + SCL initializing use_speaker_encoder_as_loss=true, speaker_encoder_loss_alpha=9.0, speaker_encoder_config_path and speaker_encoder_model_path(downloaded them from your google disk

    So my config file is almost identical to the one you have for the experiment(I don't have fine_tuning_mode=0, but I checked and 0 means disabled, so it shouldn't affect anything. Also use_speaker_embedding=false, otherwise it complains that vectors are initialized)

    My problem is when I print out model weights keys of your model and mine I have speaker encoder layers missing. They are not initialized for some reason. Unfortunately, I don't have any ideas why this could be happening :( Could you maybe point out a direction and what could I check?

      "use_sdp": true,
        "noise_scale": 1.0,
        "inference_noise_scale": 0.667,
        "length_scale": 1,
        "noise_scale_dp": 1.0,
        "inference_noise_scale_dp": 0.8,
        "max_inference_len": null,
        "init_discriminator": true,
        "use_spectral_norm_disriminator": false,
        "use_speaker_embedding": true,
        "num_speakers": 97,
        "speakers_file": null,
        "d_vector_file": "../speaker_embeddings/new-SE/VCTK+TTS-PT+MAILABS-FR/speakers.json",
        "speaker_embedding_channels": 512,
        "use_d_vector_file": true,
        "d_vector_dim": 512,
        "detach_dp_input": true,
        "use_language_embedding": false,
        "embedded_language_dim": 4,
        "num_languages": 0,
        "use_speaker_encoder_as_loss": true,
        "speaker_encoder_config_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/config.json",
        "speaker_encoder_model_path": "../checkpoints/Speaker_Encoder/Resnet-original-paper/converted_checkpoint.pth.tar",
        "fine_tuning_mode": 0,
        "freeze_encoder": false,
        "freeze_DP": false,
        "freeze_PE": false,
        "freeze_flow_decoder": false,
        "freeze_waveform_decoder": false
    
    opened by stalevna 3
  • Zeroshot TTS notebook no longer working

    Zeroshot TTS notebook no longer working

    Hi @Edresson @WeberJulian

    the demo notebook is no longer working with the current TTS master repo.

    I'm having hard time to execute things.

    Do you intend to adjust ? thanks

    opened by vince62s 3
Owner
Edresson Casanova
Computer Science PhD Student
Edresson Casanova
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
wlad 2 Dec 19, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022