Speedy Implementation of Instance-based Learning (IBL) agents in Python

Overview

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1

References

[1] Cleotilde Gonzalez, Javier F. Lerch and Christian Lebiere (2003), Instance-based learning in dynamic decision making, Cognitive Science, 27, 591-635. DOI: 10.1016/S0364-0213(03)00031-4.

[2] Thuy Ngoc Nguyen, Duy Nhat Phan, Cleotilde Gonzalez (2021), SpeedyIBL: A Solution to the Curse of Exponential Growth in Instance-Based Learning Models of Decisions from Experience

Installation of speedy IBL

%pip install -U speedyibl
Requirement already satisfied: speedyibl in /usr/local/lib/python3.7/dist-packages (0.0.9)
Requirement already satisfied: wheel in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.37.0)
Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.8.9)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from speedyibl) (1.19.5)
Requirement already satisfied: setuptools>=42 in /usr/local/lib/python3.7/dist-packages (from speedyibl) (57.4.0)

Import libraries

from speedyibl import Agent
import random 
import numpy as np
import matplotlib.pyplot as plt

Illustration of IBL for Binary Choice Task

Task description

In each episode, the agent is required to choose one of two options: Safe or Risky. One option is Safe and it yields a fixed medium outcome (i.e., 3) every time it is chosen. The other option is Risky, and it yields a high outcome (4) with some probability 0.8, and a low outcome (0) with the complementary probability 0.2.

agent = Agent(default_utility=4.4) #define the agent with default_utility = 4.4, noise = 0.25 decay = 0.5
options = ['safe','risky'] # set of options
runs = 100 # number of runs (participants)
episodes = 100 # number of episodes (trials, rounds)
average_pmax = [] # to store average of performance (proportion of maximum reward expectation choice)

for r in range(runs):
  pmax = []
  agent.reset() #clear the memory for a new run
  for e in range(episodes):     

    choice = agent.choose(options)
    if choice == 'safe':
      agent.respond(3)
    elif random.random() <= 0.8:
      agent.respond(4)
    else:
      agent.respond(0)
    pmax.append(choice == 'risky')
  average_pmax.append(pmax)

Plot the result

plt.plot(range(episodes), np.mean(np.asarray(average_pmax),axis=0), 'o-', color='darkgreen', markersize=2, linestyle='--', label='speedyIBL')

plt.xlabel('Episode')
plt.ylabel('PMAX')
plt.title('Binary choice')
plt.grid(True)
plt.show()

png

Illustration of IBL for Insider Attack Game

Task description

In this game, players take the role of the attacker and their goal is to score points by “hacking” computers to steal proprietary data.

TARGETS = [ [ { "payment": 2, "penalty":  -1, "monitored_probability": 0.22 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.51 },
              { "payment": 9, "penalty":  -9, "monitored_probability": 0.42 },
              { "payment": 9, "penalty": -10, "monitored_probability": 0.40 },
              { "payment": 2, "penalty":  -6, "monitored_probability": 0.08 },
              { "payment": 5, "penalty":  -5, "monitored_probability": 0.36 } ],
            [ { "payment": 5, "penalty":  -3, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.48 },
              { "payment": 7, "penalty":  -6, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -9, "monitored_probability": 0.37 },
              { "payment": 5, "penalty":  -7, "monitored_probability": 0.27 },
              { "payment": 2, "penalty":  -4, "monitored_probability": 0.05 } ],
            [ { "payment": 3, "penalty":  -3, "monitored_probability": 0.30 },
              { "payment": 9, "penalty":  -4, "monitored_probability": 0.60 },
              { "payment": 6, "penalty":  -6, "monitored_probability": 0.40 },
              { "payment": 5, "penalty":  -8, "monitored_probability": 0.29 },
              { "payment": 3, "penalty":  -6, "monitored_probability": 0.20 },
              { "payment": 2, "penalty":  -2, "monitored_probability": 0.20 } ],
            [ { "payment": 4, "penalty":  -3, "monitored_probability": 0.37 },
              { "payment": 6, "penalty":  -3, "monitored_probability": 0.51 },
              { "payment": 7, "penalty":  -7, "monitored_probability": 0.40 },
              { "payment": 5, "penalty": -10, "monitored_probability": 0.24 },
              { "payment": 5, "penalty":  -9, "monitored_probability": 0.26 },
              { "payment": 3, "penalty":  -4, "monitored_probability": 0.23 } ] ]

COVERAGE = [ [ { 2, 6 }, { 2, 4 }, { 2, 5 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 4 }, { 2, 6 },
               { 2, 6 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 4 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 2, 4 }, { 3, 6 },
               { 1, 3 }, { 2, 4 }, { 3, 6 }, { 2, 4 }, { 1, 3 } ],
             [ { 2, 5 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 2, 4 }, { 1, 3 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 2, 5 }, { 1, 3 }, { 1, 3 },
               { 1, 3 }, { 2, 5 }, { 2, 4 }, { 2, 4 }, { 1, 3 },
               { 1, 3 }, { 2, 4 }, { 2, 4 }, { 3, 6 }, { 2, 5 } ],
             [ { 2, 5 }, { 3, 6 }, { 2, 4 }, { 2, 5 }, { 2, 5 },
               { 2, 6 }, { 2, 6 }, { 1, 3 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 6 }, { 2, 5 },
               { 1, 3 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 5 },
               { 2, 4 }, { 2, 4 }, { 2, 6 }, { 1, 3 }, { 2, 4 } ],
             [ { 2, 5 }, { 1, 4 }, { 3, 6 }, { 2, 6 }, { 1, 3 },
               { 1, 4 }, { 1, 3 }, { 2, 5 }, { 2, 6 }, { 1, 3 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 1, 4 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 1, 4 }, { 1, 3 }, { 2, 5 },
               { 3, 6 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 4 } ] ]

TRAINING_COVERAGE = [ { 2, 5 }, { 2, 4 }, { 1 , 3 }, { 1, 3 }, { 1, 3 } ]

SIGNALS = [ [ { 3, 4 }, { 3, 6 }, { 3, 6 }, { 3, 5, 6 }, { 2, 6 },
              { 3, 6 }, { 2, 4}, { 2, 6 }, { 3, 6 }, { 1, 3, 4 },
              { 3, 4 }, { 1, 3 }, { 4, 6 }, { 5}, { 3, 6 },
              { 2, 4 }, { 5 }, { 3 }, { 6 }, { 2, 4 },
              { 2, 4 }, set(), {2, 4, 5 }, { 3 }, { 5, 6 } ],
            [ { 3, 4 }, { 2, 4 }, { 2, 4, 5 }, { 4, 5 }, { 4, 5 },
              { 1, 3, 6 }, { 2 }, { 3 }, { 5 }, set(),
              { 2, 5 }, { 2, 5 }, {3, 4 }, { 2, 5 }, { 2, 4, 5 },
              { 4, 5 }, { 3, 4 }, { 3, 5, 6 }, { 1, 5}, { 2, 5 },
              { 2 }, { 1, 5 }, { 1, 3, 5 }, { 4 }, { 1, 3, 4, 6 } ],
            [ { 1, 3, 6 }, { 2, 4 }, set(), { 1, 3, 4 }, { 3 },
              { 1, 4, 5 }, { 5 }, { 2, 4}, { 1, 3, 5 }, set(),
              { 1, 3, 5 }, { 2 }, { 2, 4, 5 }, { 5 }, { 3, 4 },
              { 2, 4, 5, 6 }, { 1, 3, 5 }, { 2, 4, 6 }, { 1, 3 }, { 1, 4 },
              { 5 }, {3 }, set(), { 2, 5, 6 }, { 1, 3, 5, 6 } ],
            [ { 6 }, { 3 }, { 2, 4 }, { 4, 5}, { 6 },
              { 3, 5 }, { 4 }, { 3, 4, 6 }, { 1, 3, 4, 5 }, { 2, 4, 6 },
              {4, 5 }, { 2, 5 }, { 1, 5, 6 }, { 2, 3, 6 }, { 2, 3 },
              { 5 }, { 2, 4, 5, 6 }, { 2, 3, 5, 6 }, { 2, 4, 5 }, { 1, 3, 4, 6 },
              { 2, 4, 5 }, { 4, 5 }, { 4 }, { 4, 5 }, { 3, 5, 6 } ] ]

TRAINING_SIGNALS = [ { 3, 4 }, {1, 3, 6 }, { 5 }, { 2, 5 }, {2, 4, 5} ]

for clist, slist in zip(COVERAGE, SIGNALS):
    for c, s in zip(clist, slist):
        s.update(c)

TARGET_COUNT = len(TARGETS[0])
BLOCKS = len(TARGETS)
TRIALS = len(COVERAGE[0])

selection_agent = Agent(default_utility=None,mismatchPenalty = 2.5)
attack_agent = Agent(default_utility=None)
selection_agent = Agent(mismatchPenalty = 2.5) #define the agents with default parameters
selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))

attacks = [0] * BLOCKS * TRIALS

runs = 1000 # number of runs (participants)
data = []

for p in range(runs):
  total = 0
  selection_agent.reset()
  selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
  selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))
  
  attack_agent.reset()
  dup = random.randrange(5)
  for i in range(5):
      n = random.randrange(TARGET_COUNT)
      x = TARGETS[1][n]
      covered = n + 1 in TRAINING_COVERAGE[i]
      selection_agent.prepopulate((i + 1,
                                                (x["payment"],
                                                x["penalty"],
                                                x["monitored_probability"])),
                                                x["penalty" if covered else "payment"])
      attack_agent.prepopulate((True, n + 1 in TRAINING_SIGNALS[i]),x["penalty" if covered else "payment"])
      if i == dup:
          # x = TARGETS[1][5]
          selection_agent.prepopulate((6,
                                      (x["payment"],
                                      x["penalty"],
                                      x["monitored_probability"])),
                                      x["penalty" if covered else "payment"])
  attack_agent.prepopulate((False,False),0)
  attack_agent.prepopulate((False,True),0)
  attack_agent.prepopulate((True,False),10)
  attack_agent.prepopulate((False,True),5)
  
  for b in range(BLOCKS):
      sds = [ (i + 1,
                                        (x["payment"],
                                        x["penalty"],
                                        x["monitored_probability"]))
                        for x, i in zip(TARGETS[b], range(TARGET_COUNT)) ]

      for t in range(TRIALS):
          selected = selection_agent.choose(sds)[0]
          warned = selected in SIGNALS[b][t]
          pmnt = TARGETS[b][selected - 1]["payment"]
          attack = attack_agent.choose([(True, warned),
                                        (False, warned)])[0]
          covered = selected in COVERAGE[b][t]
          if not attack:
              payoff = 0
          else:
              payoff = TARGETS[b][selected - 1]["penalty" if covered else "payment"]
              attacks[b * 25 + t] += 1
          total += payoff
          attack_agent.respond(payoff)
          selection_agent.respond(payoff)
          data.append([p+1, b+1,t+1,b*25+t+1, selected, int(warned), int(covered),int(attack),payoff, total])

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(3).mean()[8], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Round')
plt.ylabel('Average Reward')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7efc84231690>

png

Build an IBL Agent with an Equal Delay Feedback Mechanism

This model will be employed to perform the tasks following

from speedyibl import Agent
from collections import deque
class AgentIBL(Agent):

	# """ Agent """
	def __init__(self, outputs, default_utility = 0.1, Hash = True, delay_feedback = True):
		super(AgentIBL, self).__init__(default_utility=default_utility)
		# '''
		# :param dict config: Dictionary containing hyperparameters
		# '''
		self.outputs = outputs
		self.options = {}
		self.episode_history = []
		self.hash = Hash
		self.delay_feedback = delay_feedback

	def generate_options(self,s_hash):
		self.options[s_hash] = [(s_hash, a) for a in range(self.outputs)]
	
	def move(self, o, explore=True):
		# '''
		# Returns an action from the IBL agent instance.
		# :param tensor: State/Observation
		# '''
		if self.hash:
			s_hash = hash(o.tobytes())
		else:
			s_hash = o
		if s_hash not in self.options:
			self.generate_options(s_hash)
		options = self.options[s_hash]
		choice = self.choose(options)
		self.last_action = choice[1]

		self.current = s_hash

		return self.last_action



	def feedback(self, reward):

		self.respond(reward)

		#episode history
		if self.delay_feedback and (len(self.episode_history) == 0 or self.current != self.episode_history[-1][0]):
			self.episode_history.append((self.current,self.last_action,reward,self.t))
			

	def delayfeedback(self, reward):		
		self.equal_delay_feedback(reward, self.episode_history)

Illustration of IBL for Cooperative Navigation

Task description

In this task, three agents must cooperate through physical actions to reach a set of three landmarks (3 green landmarks). The agents can observe the relative positions of other agents and landmarks, and are collectively rewarded based on the number of the landmarks that they cover. For instance, if all the agents cover only one landmark, they receive one point. By contrast, if they all can cover the three landmarks, they got the maximum of three points. Simply put, the agents want to cover all of the landmarks, so they need to learn to coordinate the landmark they must cover.

Install and call the cooperative navigation environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('NAVIGATION_V1')
Collecting vitenv
  Downloading vitenv-0.0.4-py3-none-any.whl (27 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Installing collected packages: vitenv
Successfully installed vitenv-0.0.4

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 3

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=2.5)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      if j == steps-1:
          env.env.t_episode = True
      #######################################
      arriveds = deepcopy(env.env.arriveds)
      actions = [4,4,4]
      for a in range(number_agents):
          if not arriveds[a]:
              actions[a] = agents[a].move(observations[a])

      observations, rewards, t = env.step(actions)

      if j == steps-1:
          t = True

      for a, r in zip(range(number_agents),rewards):
          if not arriveds[a]: 
              agents[a].feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            if r > 0:
              agent.delayfeedback(r) 
            agent.episode_history = []


      episode_reward += rewards[0]
      if t: 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot results

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('Cooperative navigation')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d3ec1a50>

png

Illustration of IBL for Minimap

Task description

The task is inspired by a search and rescue scenario, which involves an agent being placed in a building with multiple rooms and tasked with rescuing victims. Victims have been scattered across the building and their injuries have different degrees of severity with some needing more urgent care than others. In particular, there are 34 victims grouped into two categories (24 green victims and 10 yellow victims). There are many obstacles (walls) placed in the path forcing the agent to look for alternate routes. The agent's goal is to rescue as many of these victims as possible. The task is simulated as a $93 \times 50$ grid of cells which represents one floor of this building. Each cell is either empty, an obstacle or a victim. The agent can choose to move left, right, up or down, and only move one cell at a time.

Install and call the MINIMAP environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('MINIMAP_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.1)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)

Run experiments

runs = 5
episodes = 100
steps = 2500
number_agents = 3

data = []

for run in range(runs):

  
  agent = AgentIBL(env.out,default_utility=0.1) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('MINIMAP V1')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d44ded90>

png

Illustration of IBL for Firemen Task

Task description

The task replicates the coordination in firefighting service wherein agents need to pick up matching items for extinguishing fire. The task is simulated in a gridworld of size $11\times 14$. Two agents located within the gridworld are tasked with locating an equipment pickup area and choosing one of the firefight items. Afterwards, they need to navigate and find the location of fire (F) to extinguish it. The task is fully cooperative as both agents are required to extinguish one fire.

Install and call the FIREMAN environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('FIREMEN_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.4)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)

Run experiments

runs = 10
episodes = 100
steps = 2500
number_agents = 2

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=13)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      actions = []
      for agent, o in zip(agents,observations):
          actions.append(agent.move(o))
      observations, rewards, t = env.step(actions)

      for agent, r in zip(agents, rewards):
        agent.feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            agent.delayfeedback(r) 
            agent.episode_history = []

      if j == steps-1:
          t = True

      episode_reward += rewards[0]
      if t: 
        for agent in agents:
          agent.episode_history = []
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run
Finished  5 -th run
Finished  6 -th run
Finished  7 -th run
Finished  8 -th run
Finished  9 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('FIREMEN TASK')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f53fd40df10>

png

Illustration of IBL for Tasks from GymAI

Install and call the CartPole Task

%pip install gym
import gym 
env = gym.make('CartPole-v1')
Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages (0.17.3)
Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.5.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from gym) (1.4.1)
Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.3.0)
Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist-packages (from gym) (1.19.5)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym) (0.16.0)

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 1

data = []

for run in range(runs):

  
  agent = AgentIBL(env.action_space.n,default_utility=11) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t, info = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,episodes+1), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('CartPole Game')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f810f1ee590>

png

Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023