Speedy Implementation of Instance-based Learning (IBL) agents in Python

Overview

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1

References

[1] Cleotilde Gonzalez, Javier F. Lerch and Christian Lebiere (2003), Instance-based learning in dynamic decision making, Cognitive Science, 27, 591-635. DOI: 10.1016/S0364-0213(03)00031-4.

[2] Thuy Ngoc Nguyen, Duy Nhat Phan, Cleotilde Gonzalez (2021), SpeedyIBL: A Solution to the Curse of Exponential Growth in Instance-Based Learning Models of Decisions from Experience

Installation of speedy IBL

%pip install -U speedyibl
Requirement already satisfied: speedyibl in /usr/local/lib/python3.7/dist-packages (0.0.9)
Requirement already satisfied: wheel in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.37.0)
Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.8.9)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from speedyibl) (1.19.5)
Requirement already satisfied: setuptools>=42 in /usr/local/lib/python3.7/dist-packages (from speedyibl) (57.4.0)

Import libraries

from speedyibl import Agent
import random 
import numpy as np
import matplotlib.pyplot as plt

Illustration of IBL for Binary Choice Task

Task description

In each episode, the agent is required to choose one of two options: Safe or Risky. One option is Safe and it yields a fixed medium outcome (i.e., 3) every time it is chosen. The other option is Risky, and it yields a high outcome (4) with some probability 0.8, and a low outcome (0) with the complementary probability 0.2.

agent = Agent(default_utility=4.4) #define the agent with default_utility = 4.4, noise = 0.25 decay = 0.5
options = ['safe','risky'] # set of options
runs = 100 # number of runs (participants)
episodes = 100 # number of episodes (trials, rounds)
average_pmax = [] # to store average of performance (proportion of maximum reward expectation choice)

for r in range(runs):
  pmax = []
  agent.reset() #clear the memory for a new run
  for e in range(episodes):     

    choice = agent.choose(options)
    if choice == 'safe':
      agent.respond(3)
    elif random.random() <= 0.8:
      agent.respond(4)
    else:
      agent.respond(0)
    pmax.append(choice == 'risky')
  average_pmax.append(pmax)

Plot the result

plt.plot(range(episodes), np.mean(np.asarray(average_pmax),axis=0), 'o-', color='darkgreen', markersize=2, linestyle='--', label='speedyIBL')

plt.xlabel('Episode')
plt.ylabel('PMAX')
plt.title('Binary choice')
plt.grid(True)
plt.show()

png

Illustration of IBL for Insider Attack Game

Task description

In this game, players take the role of the attacker and their goal is to score points by “hacking” computers to steal proprietary data.

TARGETS = [ [ { "payment": 2, "penalty":  -1, "monitored_probability": 0.22 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.51 },
              { "payment": 9, "penalty":  -9, "monitored_probability": 0.42 },
              { "payment": 9, "penalty": -10, "monitored_probability": 0.40 },
              { "payment": 2, "penalty":  -6, "monitored_probability": 0.08 },
              { "payment": 5, "penalty":  -5, "monitored_probability": 0.36 } ],
            [ { "payment": 5, "penalty":  -3, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.48 },
              { "payment": 7, "penalty":  -6, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -9, "monitored_probability": 0.37 },
              { "payment": 5, "penalty":  -7, "monitored_probability": 0.27 },
              { "payment": 2, "penalty":  -4, "monitored_probability": 0.05 } ],
            [ { "payment": 3, "penalty":  -3, "monitored_probability": 0.30 },
              { "payment": 9, "penalty":  -4, "monitored_probability": 0.60 },
              { "payment": 6, "penalty":  -6, "monitored_probability": 0.40 },
              { "payment": 5, "penalty":  -8, "monitored_probability": 0.29 },
              { "payment": 3, "penalty":  -6, "monitored_probability": 0.20 },
              { "payment": 2, "penalty":  -2, "monitored_probability": 0.20 } ],
            [ { "payment": 4, "penalty":  -3, "monitored_probability": 0.37 },
              { "payment": 6, "penalty":  -3, "monitored_probability": 0.51 },
              { "payment": 7, "penalty":  -7, "monitored_probability": 0.40 },
              { "payment": 5, "penalty": -10, "monitored_probability": 0.24 },
              { "payment": 5, "penalty":  -9, "monitored_probability": 0.26 },
              { "payment": 3, "penalty":  -4, "monitored_probability": 0.23 } ] ]

COVERAGE = [ [ { 2, 6 }, { 2, 4 }, { 2, 5 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 4 }, { 2, 6 },
               { 2, 6 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 4 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 2, 4 }, { 3, 6 },
               { 1, 3 }, { 2, 4 }, { 3, 6 }, { 2, 4 }, { 1, 3 } ],
             [ { 2, 5 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 2, 4 }, { 1, 3 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 2, 5 }, { 1, 3 }, { 1, 3 },
               { 1, 3 }, { 2, 5 }, { 2, 4 }, { 2, 4 }, { 1, 3 },
               { 1, 3 }, { 2, 4 }, { 2, 4 }, { 3, 6 }, { 2, 5 } ],
             [ { 2, 5 }, { 3, 6 }, { 2, 4 }, { 2, 5 }, { 2, 5 },
               { 2, 6 }, { 2, 6 }, { 1, 3 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 6 }, { 2, 5 },
               { 1, 3 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 5 },
               { 2, 4 }, { 2, 4 }, { 2, 6 }, { 1, 3 }, { 2, 4 } ],
             [ { 2, 5 }, { 1, 4 }, { 3, 6 }, { 2, 6 }, { 1, 3 },
               { 1, 4 }, { 1, 3 }, { 2, 5 }, { 2, 6 }, { 1, 3 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 1, 4 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 1, 4 }, { 1, 3 }, { 2, 5 },
               { 3, 6 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 4 } ] ]

TRAINING_COVERAGE = [ { 2, 5 }, { 2, 4 }, { 1 , 3 }, { 1, 3 }, { 1, 3 } ]

SIGNALS = [ [ { 3, 4 }, { 3, 6 }, { 3, 6 }, { 3, 5, 6 }, { 2, 6 },
              { 3, 6 }, { 2, 4}, { 2, 6 }, { 3, 6 }, { 1, 3, 4 },
              { 3, 4 }, { 1, 3 }, { 4, 6 }, { 5}, { 3, 6 },
              { 2, 4 }, { 5 }, { 3 }, { 6 }, { 2, 4 },
              { 2, 4 }, set(), {2, 4, 5 }, { 3 }, { 5, 6 } ],
            [ { 3, 4 }, { 2, 4 }, { 2, 4, 5 }, { 4, 5 }, { 4, 5 },
              { 1, 3, 6 }, { 2 }, { 3 }, { 5 }, set(),
              { 2, 5 }, { 2, 5 }, {3, 4 }, { 2, 5 }, { 2, 4, 5 },
              { 4, 5 }, { 3, 4 }, { 3, 5, 6 }, { 1, 5}, { 2, 5 },
              { 2 }, { 1, 5 }, { 1, 3, 5 }, { 4 }, { 1, 3, 4, 6 } ],
            [ { 1, 3, 6 }, { 2, 4 }, set(), { 1, 3, 4 }, { 3 },
              { 1, 4, 5 }, { 5 }, { 2, 4}, { 1, 3, 5 }, set(),
              { 1, 3, 5 }, { 2 }, { 2, 4, 5 }, { 5 }, { 3, 4 },
              { 2, 4, 5, 6 }, { 1, 3, 5 }, { 2, 4, 6 }, { 1, 3 }, { 1, 4 },
              { 5 }, {3 }, set(), { 2, 5, 6 }, { 1, 3, 5, 6 } ],
            [ { 6 }, { 3 }, { 2, 4 }, { 4, 5}, { 6 },
              { 3, 5 }, { 4 }, { 3, 4, 6 }, { 1, 3, 4, 5 }, { 2, 4, 6 },
              {4, 5 }, { 2, 5 }, { 1, 5, 6 }, { 2, 3, 6 }, { 2, 3 },
              { 5 }, { 2, 4, 5, 6 }, { 2, 3, 5, 6 }, { 2, 4, 5 }, { 1, 3, 4, 6 },
              { 2, 4, 5 }, { 4, 5 }, { 4 }, { 4, 5 }, { 3, 5, 6 } ] ]

TRAINING_SIGNALS = [ { 3, 4 }, {1, 3, 6 }, { 5 }, { 2, 5 }, {2, 4, 5} ]

for clist, slist in zip(COVERAGE, SIGNALS):
    for c, s in zip(clist, slist):
        s.update(c)

TARGET_COUNT = len(TARGETS[0])
BLOCKS = len(TARGETS)
TRIALS = len(COVERAGE[0])

selection_agent = Agent(default_utility=None,mismatchPenalty = 2.5)
attack_agent = Agent(default_utility=None)
selection_agent = Agent(mismatchPenalty = 2.5) #define the agents with default parameters
selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))

attacks = [0] * BLOCKS * TRIALS

runs = 1000 # number of runs (participants)
data = []

for p in range(runs):
  total = 0
  selection_agent.reset()
  selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
  selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))
  
  attack_agent.reset()
  dup = random.randrange(5)
  for i in range(5):
      n = random.randrange(TARGET_COUNT)
      x = TARGETS[1][n]
      covered = n + 1 in TRAINING_COVERAGE[i]
      selection_agent.prepopulate((i + 1,
                                                (x["payment"],
                                                x["penalty"],
                                                x["monitored_probability"])),
                                                x["penalty" if covered else "payment"])
      attack_agent.prepopulate((True, n + 1 in TRAINING_SIGNALS[i]),x["penalty" if covered else "payment"])
      if i == dup:
          # x = TARGETS[1][5]
          selection_agent.prepopulate((6,
                                      (x["payment"],
                                      x["penalty"],
                                      x["monitored_probability"])),
                                      x["penalty" if covered else "payment"])
  attack_agent.prepopulate((False,False),0)
  attack_agent.prepopulate((False,True),0)
  attack_agent.prepopulate((True,False),10)
  attack_agent.prepopulate((False,True),5)
  
  for b in range(BLOCKS):
      sds = [ (i + 1,
                                        (x["payment"],
                                        x["penalty"],
                                        x["monitored_probability"]))
                        for x, i in zip(TARGETS[b], range(TARGET_COUNT)) ]

      for t in range(TRIALS):
          selected = selection_agent.choose(sds)[0]
          warned = selected in SIGNALS[b][t]
          pmnt = TARGETS[b][selected - 1]["payment"]
          attack = attack_agent.choose([(True, warned),
                                        (False, warned)])[0]
          covered = selected in COVERAGE[b][t]
          if not attack:
              payoff = 0
          else:
              payoff = TARGETS[b][selected - 1]["penalty" if covered else "payment"]
              attacks[b * 25 + t] += 1
          total += payoff
          attack_agent.respond(payoff)
          selection_agent.respond(payoff)
          data.append([p+1, b+1,t+1,b*25+t+1, selected, int(warned), int(covered),int(attack),payoff, total])

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(3).mean()[8], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Round')
plt.ylabel('Average Reward')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7efc84231690>

png

Build an IBL Agent with an Equal Delay Feedback Mechanism

This model will be employed to perform the tasks following

from speedyibl import Agent
from collections import deque
class AgentIBL(Agent):

	# """ Agent """
	def __init__(self, outputs, default_utility = 0.1, Hash = True, delay_feedback = True):
		super(AgentIBL, self).__init__(default_utility=default_utility)
		# '''
		# :param dict config: Dictionary containing hyperparameters
		# '''
		self.outputs = outputs
		self.options = {}
		self.episode_history = []
		self.hash = Hash
		self.delay_feedback = delay_feedback

	def generate_options(self,s_hash):
		self.options[s_hash] = [(s_hash, a) for a in range(self.outputs)]
	
	def move(self, o, explore=True):
		# '''
		# Returns an action from the IBL agent instance.
		# :param tensor: State/Observation
		# '''
		if self.hash:
			s_hash = hash(o.tobytes())
		else:
			s_hash = o
		if s_hash not in self.options:
			self.generate_options(s_hash)
		options = self.options[s_hash]
		choice = self.choose(options)
		self.last_action = choice[1]

		self.current = s_hash

		return self.last_action



	def feedback(self, reward):

		self.respond(reward)

		#episode history
		if self.delay_feedback and (len(self.episode_history) == 0 or self.current != self.episode_history[-1][0]):
			self.episode_history.append((self.current,self.last_action,reward,self.t))
			

	def delayfeedback(self, reward):		
		self.equal_delay_feedback(reward, self.episode_history)

Illustration of IBL for Cooperative Navigation

Task description

In this task, three agents must cooperate through physical actions to reach a set of three landmarks (3 green landmarks). The agents can observe the relative positions of other agents and landmarks, and are collectively rewarded based on the number of the landmarks that they cover. For instance, if all the agents cover only one landmark, they receive one point. By contrast, if they all can cover the three landmarks, they got the maximum of three points. Simply put, the agents want to cover all of the landmarks, so they need to learn to coordinate the landmark they must cover.

Install and call the cooperative navigation environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('NAVIGATION_V1')
Collecting vitenv
  Downloading vitenv-0.0.4-py3-none-any.whl (27 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Installing collected packages: vitenv
Successfully installed vitenv-0.0.4

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 3

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=2.5)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      if j == steps-1:
          env.env.t_episode = True
      #######################################
      arriveds = deepcopy(env.env.arriveds)
      actions = [4,4,4]
      for a in range(number_agents):
          if not arriveds[a]:
              actions[a] = agents[a].move(observations[a])

      observations, rewards, t = env.step(actions)

      if j == steps-1:
          t = True

      for a, r in zip(range(number_agents),rewards):
          if not arriveds[a]: 
              agents[a].feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            if r > 0:
              agent.delayfeedback(r) 
            agent.episode_history = []


      episode_reward += rewards[0]
      if t: 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot results

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('Cooperative navigation')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d3ec1a50>

png

Illustration of IBL for Minimap

Task description

The task is inspired by a search and rescue scenario, which involves an agent being placed in a building with multiple rooms and tasked with rescuing victims. Victims have been scattered across the building and their injuries have different degrees of severity with some needing more urgent care than others. In particular, there are 34 victims grouped into two categories (24 green victims and 10 yellow victims). There are many obstacles (walls) placed in the path forcing the agent to look for alternate routes. The agent's goal is to rescue as many of these victims as possible. The task is simulated as a $93 \times 50$ grid of cells which represents one floor of this building. Each cell is either empty, an obstacle or a victim. The agent can choose to move left, right, up or down, and only move one cell at a time.

Install and call the MINIMAP environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('MINIMAP_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.1)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)

Run experiments

runs = 5
episodes = 100
steps = 2500
number_agents = 3

data = []

for run in range(runs):

  
  agent = AgentIBL(env.out,default_utility=0.1) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('MINIMAP V1')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d44ded90>

png

Illustration of IBL for Firemen Task

Task description

The task replicates the coordination in firefighting service wherein agents need to pick up matching items for extinguishing fire. The task is simulated in a gridworld of size $11\times 14$. Two agents located within the gridworld are tasked with locating an equipment pickup area and choosing one of the firefight items. Afterwards, they need to navigate and find the location of fire (F) to extinguish it. The task is fully cooperative as both agents are required to extinguish one fire.

Install and call the FIREMAN environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('FIREMEN_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.4)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)

Run experiments

runs = 10
episodes = 100
steps = 2500
number_agents = 2

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=13)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      actions = []
      for agent, o in zip(agents,observations):
          actions.append(agent.move(o))
      observations, rewards, t = env.step(actions)

      for agent, r in zip(agents, rewards):
        agent.feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            agent.delayfeedback(r) 
            agent.episode_history = []

      if j == steps-1:
          t = True

      episode_reward += rewards[0]
      if t: 
        for agent in agents:
          agent.episode_history = []
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run
Finished  5 -th run
Finished  6 -th run
Finished  7 -th run
Finished  8 -th run
Finished  9 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('FIREMEN TASK')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f53fd40df10>

png

Illustration of IBL for Tasks from GymAI

Install and call the CartPole Task

%pip install gym
import gym 
env = gym.make('CartPole-v1')
Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages (0.17.3)
Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.5.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from gym) (1.4.1)
Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.3.0)
Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist-packages (from gym) (1.19.5)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym) (0.16.0)

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 1

data = []

for run in range(runs):

  
  agent = AgentIBL(env.action_space.n,default_utility=11) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t, info = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,episodes+1), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('CartPole Game')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f810f1ee590>

png

Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022