Speedy Implementation of Instance-based Learning (IBL) agents in Python

Overview

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1

References

[1] Cleotilde Gonzalez, Javier F. Lerch and Christian Lebiere (2003), Instance-based learning in dynamic decision making, Cognitive Science, 27, 591-635. DOI: 10.1016/S0364-0213(03)00031-4.

[2] Thuy Ngoc Nguyen, Duy Nhat Phan, Cleotilde Gonzalez (2021), SpeedyIBL: A Solution to the Curse of Exponential Growth in Instance-Based Learning Models of Decisions from Experience

Installation of speedy IBL

%pip install -U speedyibl
Requirement already satisfied: speedyibl in /usr/local/lib/python3.7/dist-packages (0.0.9)
Requirement already satisfied: wheel in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.37.0)
Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.8.9)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from speedyibl) (1.19.5)
Requirement already satisfied: setuptools>=42 in /usr/local/lib/python3.7/dist-packages (from speedyibl) (57.4.0)

Import libraries

from speedyibl import Agent
import random 
import numpy as np
import matplotlib.pyplot as plt

Illustration of IBL for Binary Choice Task

Task description

In each episode, the agent is required to choose one of two options: Safe or Risky. One option is Safe and it yields a fixed medium outcome (i.e., 3) every time it is chosen. The other option is Risky, and it yields a high outcome (4) with some probability 0.8, and a low outcome (0) with the complementary probability 0.2.

agent = Agent(default_utility=4.4) #define the agent with default_utility = 4.4, noise = 0.25 decay = 0.5
options = ['safe','risky'] # set of options
runs = 100 # number of runs (participants)
episodes = 100 # number of episodes (trials, rounds)
average_pmax = [] # to store average of performance (proportion of maximum reward expectation choice)

for r in range(runs):
  pmax = []
  agent.reset() #clear the memory for a new run
  for e in range(episodes):     

    choice = agent.choose(options)
    if choice == 'safe':
      agent.respond(3)
    elif random.random() <= 0.8:
      agent.respond(4)
    else:
      agent.respond(0)
    pmax.append(choice == 'risky')
  average_pmax.append(pmax)

Plot the result

plt.plot(range(episodes), np.mean(np.asarray(average_pmax),axis=0), 'o-', color='darkgreen', markersize=2, linestyle='--', label='speedyIBL')

plt.xlabel('Episode')
plt.ylabel('PMAX')
plt.title('Binary choice')
plt.grid(True)
plt.show()

png

Illustration of IBL for Insider Attack Game

Task description

In this game, players take the role of the attacker and their goal is to score points by “hacking” computers to steal proprietary data.

TARGETS = [ [ { "payment": 2, "penalty":  -1, "monitored_probability": 0.22 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.51 },
              { "payment": 9, "penalty":  -9, "monitored_probability": 0.42 },
              { "payment": 9, "penalty": -10, "monitored_probability": 0.40 },
              { "payment": 2, "penalty":  -6, "monitored_probability": 0.08 },
              { "payment": 5, "penalty":  -5, "monitored_probability": 0.36 } ],
            [ { "payment": 5, "penalty":  -3, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.48 },
              { "payment": 7, "penalty":  -6, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -9, "monitored_probability": 0.37 },
              { "payment": 5, "penalty":  -7, "monitored_probability": 0.27 },
              { "payment": 2, "penalty":  -4, "monitored_probability": 0.05 } ],
            [ { "payment": 3, "penalty":  -3, "monitored_probability": 0.30 },
              { "payment": 9, "penalty":  -4, "monitored_probability": 0.60 },
              { "payment": 6, "penalty":  -6, "monitored_probability": 0.40 },
              { "payment": 5, "penalty":  -8, "monitored_probability": 0.29 },
              { "payment": 3, "penalty":  -6, "monitored_probability": 0.20 },
              { "payment": 2, "penalty":  -2, "monitored_probability": 0.20 } ],
            [ { "payment": 4, "penalty":  -3, "monitored_probability": 0.37 },
              { "payment": 6, "penalty":  -3, "monitored_probability": 0.51 },
              { "payment": 7, "penalty":  -7, "monitored_probability": 0.40 },
              { "payment": 5, "penalty": -10, "monitored_probability": 0.24 },
              { "payment": 5, "penalty":  -9, "monitored_probability": 0.26 },
              { "payment": 3, "penalty":  -4, "monitored_probability": 0.23 } ] ]

COVERAGE = [ [ { 2, 6 }, { 2, 4 }, { 2, 5 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 4 }, { 2, 6 },
               { 2, 6 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 4 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 2, 4 }, { 3, 6 },
               { 1, 3 }, { 2, 4 }, { 3, 6 }, { 2, 4 }, { 1, 3 } ],
             [ { 2, 5 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 2, 4 }, { 1, 3 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 2, 5 }, { 1, 3 }, { 1, 3 },
               { 1, 3 }, { 2, 5 }, { 2, 4 }, { 2, 4 }, { 1, 3 },
               { 1, 3 }, { 2, 4 }, { 2, 4 }, { 3, 6 }, { 2, 5 } ],
             [ { 2, 5 }, { 3, 6 }, { 2, 4 }, { 2, 5 }, { 2, 5 },
               { 2, 6 }, { 2, 6 }, { 1, 3 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 6 }, { 2, 5 },
               { 1, 3 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 5 },
               { 2, 4 }, { 2, 4 }, { 2, 6 }, { 1, 3 }, { 2, 4 } ],
             [ { 2, 5 }, { 1, 4 }, { 3, 6 }, { 2, 6 }, { 1, 3 },
               { 1, 4 }, { 1, 3 }, { 2, 5 }, { 2, 6 }, { 1, 3 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 1, 4 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 1, 4 }, { 1, 3 }, { 2, 5 },
               { 3, 6 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 4 } ] ]

TRAINING_COVERAGE = [ { 2, 5 }, { 2, 4 }, { 1 , 3 }, { 1, 3 }, { 1, 3 } ]

SIGNALS = [ [ { 3, 4 }, { 3, 6 }, { 3, 6 }, { 3, 5, 6 }, { 2, 6 },
              { 3, 6 }, { 2, 4}, { 2, 6 }, { 3, 6 }, { 1, 3, 4 },
              { 3, 4 }, { 1, 3 }, { 4, 6 }, { 5}, { 3, 6 },
              { 2, 4 }, { 5 }, { 3 }, { 6 }, { 2, 4 },
              { 2, 4 }, set(), {2, 4, 5 }, { 3 }, { 5, 6 } ],
            [ { 3, 4 }, { 2, 4 }, { 2, 4, 5 }, { 4, 5 }, { 4, 5 },
              { 1, 3, 6 }, { 2 }, { 3 }, { 5 }, set(),
              { 2, 5 }, { 2, 5 }, {3, 4 }, { 2, 5 }, { 2, 4, 5 },
              { 4, 5 }, { 3, 4 }, { 3, 5, 6 }, { 1, 5}, { 2, 5 },
              { 2 }, { 1, 5 }, { 1, 3, 5 }, { 4 }, { 1, 3, 4, 6 } ],
            [ { 1, 3, 6 }, { 2, 4 }, set(), { 1, 3, 4 }, { 3 },
              { 1, 4, 5 }, { 5 }, { 2, 4}, { 1, 3, 5 }, set(),
              { 1, 3, 5 }, { 2 }, { 2, 4, 5 }, { 5 }, { 3, 4 },
              { 2, 4, 5, 6 }, { 1, 3, 5 }, { 2, 4, 6 }, { 1, 3 }, { 1, 4 },
              { 5 }, {3 }, set(), { 2, 5, 6 }, { 1, 3, 5, 6 } ],
            [ { 6 }, { 3 }, { 2, 4 }, { 4, 5}, { 6 },
              { 3, 5 }, { 4 }, { 3, 4, 6 }, { 1, 3, 4, 5 }, { 2, 4, 6 },
              {4, 5 }, { 2, 5 }, { 1, 5, 6 }, { 2, 3, 6 }, { 2, 3 },
              { 5 }, { 2, 4, 5, 6 }, { 2, 3, 5, 6 }, { 2, 4, 5 }, { 1, 3, 4, 6 },
              { 2, 4, 5 }, { 4, 5 }, { 4 }, { 4, 5 }, { 3, 5, 6 } ] ]

TRAINING_SIGNALS = [ { 3, 4 }, {1, 3, 6 }, { 5 }, { 2, 5 }, {2, 4, 5} ]

for clist, slist in zip(COVERAGE, SIGNALS):
    for c, s in zip(clist, slist):
        s.update(c)

TARGET_COUNT = len(TARGETS[0])
BLOCKS = len(TARGETS)
TRIALS = len(COVERAGE[0])

selection_agent = Agent(default_utility=None,mismatchPenalty = 2.5)
attack_agent = Agent(default_utility=None)
selection_agent = Agent(mismatchPenalty = 2.5) #define the agents with default parameters
selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))

attacks = [0] * BLOCKS * TRIALS

runs = 1000 # number of runs (participants)
data = []

for p in range(runs):
  total = 0
  selection_agent.reset()
  selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
  selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))
  
  attack_agent.reset()
  dup = random.randrange(5)
  for i in range(5):
      n = random.randrange(TARGET_COUNT)
      x = TARGETS[1][n]
      covered = n + 1 in TRAINING_COVERAGE[i]
      selection_agent.prepopulate((i + 1,
                                                (x["payment"],
                                                x["penalty"],
                                                x["monitored_probability"])),
                                                x["penalty" if covered else "payment"])
      attack_agent.prepopulate((True, n + 1 in TRAINING_SIGNALS[i]),x["penalty" if covered else "payment"])
      if i == dup:
          # x = TARGETS[1][5]
          selection_agent.prepopulate((6,
                                      (x["payment"],
                                      x["penalty"],
                                      x["monitored_probability"])),
                                      x["penalty" if covered else "payment"])
  attack_agent.prepopulate((False,False),0)
  attack_agent.prepopulate((False,True),0)
  attack_agent.prepopulate((True,False),10)
  attack_agent.prepopulate((False,True),5)
  
  for b in range(BLOCKS):
      sds = [ (i + 1,
                                        (x["payment"],
                                        x["penalty"],
                                        x["monitored_probability"]))
                        for x, i in zip(TARGETS[b], range(TARGET_COUNT)) ]

      for t in range(TRIALS):
          selected = selection_agent.choose(sds)[0]
          warned = selected in SIGNALS[b][t]
          pmnt = TARGETS[b][selected - 1]["payment"]
          attack = attack_agent.choose([(True, warned),
                                        (False, warned)])[0]
          covered = selected in COVERAGE[b][t]
          if not attack:
              payoff = 0
          else:
              payoff = TARGETS[b][selected - 1]["penalty" if covered else "payment"]
              attacks[b * 25 + t] += 1
          total += payoff
          attack_agent.respond(payoff)
          selection_agent.respond(payoff)
          data.append([p+1, b+1,t+1,b*25+t+1, selected, int(warned), int(covered),int(attack),payoff, total])

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(3).mean()[8], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Round')
plt.ylabel('Average Reward')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7efc84231690>

png

Build an IBL Agent with an Equal Delay Feedback Mechanism

This model will be employed to perform the tasks following

from speedyibl import Agent
from collections import deque
class AgentIBL(Agent):

	# """ Agent """
	def __init__(self, outputs, default_utility = 0.1, Hash = True, delay_feedback = True):
		super(AgentIBL, self).__init__(default_utility=default_utility)
		# '''
		# :param dict config: Dictionary containing hyperparameters
		# '''
		self.outputs = outputs
		self.options = {}
		self.episode_history = []
		self.hash = Hash
		self.delay_feedback = delay_feedback

	def generate_options(self,s_hash):
		self.options[s_hash] = [(s_hash, a) for a in range(self.outputs)]
	
	def move(self, o, explore=True):
		# '''
		# Returns an action from the IBL agent instance.
		# :param tensor: State/Observation
		# '''
		if self.hash:
			s_hash = hash(o.tobytes())
		else:
			s_hash = o
		if s_hash not in self.options:
			self.generate_options(s_hash)
		options = self.options[s_hash]
		choice = self.choose(options)
		self.last_action = choice[1]

		self.current = s_hash

		return self.last_action



	def feedback(self, reward):

		self.respond(reward)

		#episode history
		if self.delay_feedback and (len(self.episode_history) == 0 or self.current != self.episode_history[-1][0]):
			self.episode_history.append((self.current,self.last_action,reward,self.t))
			

	def delayfeedback(self, reward):		
		self.equal_delay_feedback(reward, self.episode_history)

Illustration of IBL for Cooperative Navigation

Task description

In this task, three agents must cooperate through physical actions to reach a set of three landmarks (3 green landmarks). The agents can observe the relative positions of other agents and landmarks, and are collectively rewarded based on the number of the landmarks that they cover. For instance, if all the agents cover only one landmark, they receive one point. By contrast, if they all can cover the three landmarks, they got the maximum of three points. Simply put, the agents want to cover all of the landmarks, so they need to learn to coordinate the landmark they must cover.

Install and call the cooperative navigation environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('NAVIGATION_V1')
Collecting vitenv
  Downloading vitenv-0.0.4-py3-none-any.whl (27 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Installing collected packages: vitenv
Successfully installed vitenv-0.0.4

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 3

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=2.5)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      if j == steps-1:
          env.env.t_episode = True
      #######################################
      arriveds = deepcopy(env.env.arriveds)
      actions = [4,4,4]
      for a in range(number_agents):
          if not arriveds[a]:
              actions[a] = agents[a].move(observations[a])

      observations, rewards, t = env.step(actions)

      if j == steps-1:
          t = True

      for a, r in zip(range(number_agents),rewards):
          if not arriveds[a]: 
              agents[a].feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            if r > 0:
              agent.delayfeedback(r) 
            agent.episode_history = []


      episode_reward += rewards[0]
      if t: 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot results

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('Cooperative navigation')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d3ec1a50>

png

Illustration of IBL for Minimap

Task description

The task is inspired by a search and rescue scenario, which involves an agent being placed in a building with multiple rooms and tasked with rescuing victims. Victims have been scattered across the building and their injuries have different degrees of severity with some needing more urgent care than others. In particular, there are 34 victims grouped into two categories (24 green victims and 10 yellow victims). There are many obstacles (walls) placed in the path forcing the agent to look for alternate routes. The agent's goal is to rescue as many of these victims as possible. The task is simulated as a $93 \times 50$ grid of cells which represents one floor of this building. Each cell is either empty, an obstacle or a victim. The agent can choose to move left, right, up or down, and only move one cell at a time.

Install and call the MINIMAP environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('MINIMAP_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.1)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)

Run experiments

runs = 5
episodes = 100
steps = 2500
number_agents = 3

data = []

for run in range(runs):

  
  agent = AgentIBL(env.out,default_utility=0.1) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('MINIMAP V1')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d44ded90>

png

Illustration of IBL for Firemen Task

Task description

The task replicates the coordination in firefighting service wherein agents need to pick up matching items for extinguishing fire. The task is simulated in a gridworld of size $11\times 14$. Two agents located within the gridworld are tasked with locating an equipment pickup area and choosing one of the firefight items. Afterwards, they need to navigate and find the location of fire (F) to extinguish it. The task is fully cooperative as both agents are required to extinguish one fire.

Install and call the FIREMAN environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('FIREMEN_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.4)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)

Run experiments

runs = 10
episodes = 100
steps = 2500
number_agents = 2

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=13)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      actions = []
      for agent, o in zip(agents,observations):
          actions.append(agent.move(o))
      observations, rewards, t = env.step(actions)

      for agent, r in zip(agents, rewards):
        agent.feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            agent.delayfeedback(r) 
            agent.episode_history = []

      if j == steps-1:
          t = True

      episode_reward += rewards[0]
      if t: 
        for agent in agents:
          agent.episode_history = []
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run
Finished  5 -th run
Finished  6 -th run
Finished  7 -th run
Finished  8 -th run
Finished  9 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('FIREMEN TASK')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f53fd40df10>

png

Illustration of IBL for Tasks from GymAI

Install and call the CartPole Task

%pip install gym
import gym 
env = gym.make('CartPole-v1')
Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages (0.17.3)
Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.5.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from gym) (1.4.1)
Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.3.0)
Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist-packages (from gym) (1.19.5)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym) (0.16.0)

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 1

data = []

for run in range(runs):

  
  agent = AgentIBL(env.action_space.n,default_utility=11) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t, info = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,episodes+1), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('CartPole Game')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f810f1ee590>

png

Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Atif Hassan 103 Dec 14, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022