Natural Intelligence is still a pretty good idea.

Overview

Downloads Version Code style: black DOI

Human Learn

Machine Learning models should play by the rules, literally.

Project Goal

Back in the old days, it was common to write rule-based systems. Systems that do;

Nowadays, it's much more fashionable to use machine learning instead. Something like;

We started wondering if we might have lost something in this transition. Sure, machine learning covers a lot of ground but it is also capable of making bad decisions. We need to remain careful about hype. We also shouldn't forget that many classification problems can be handled by natural intelligence too. If nothing else, it'd sure be a sensible benchmark.

This package contains scikit-learn compatible tools that should make it easier to construct and benchmark rule based systems that are designed by humans. You can also use it in combination with ML models.

Installation

You can install this tool via pip.

python -m pip install human-learn

The project builds on top of a modern installation of scikit-learn and pandas. It also uses bokeh for interactive jupyter elements, shapely for the point-in-poly algorithms and clumper to deal with json datastructures.

Documentation

Detailed documentation of this tool can be found here.

A free video course can be found on calmcode.io.

Features

This library hosts a couple of models that you can play with.

Interactive Drawings

This tool allows you to draw over your datasets. These drawings can later be converted to models or to preprocessing tools.

Classification Models

FunctionClassifier

This allows you to define a function that can make classification predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveClassifier

This allows you to draw decision boundaries in interactive charts to create a model. You can create charts interactively in the notebook and export it as a scikit-learn compatible model.

Regression Models

FunctionRegressor

This allows you to define a function that can make regression predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

Outlier Detection Models

FunctionOutlierDetector

This allows you to define a function that can declare outliers. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveOutlierDetector

This allows you to draw decision boundaries in interactive charts to create a model. If a point falls outside of these boundaries we might be able to declare it an outlier. There's a threshold parameter for how strict you might want to be.

Preprocessing Models

PipeTransformer

This allows you to define a function that can handle preprocessing. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search. This is especially powerful in combination with the pandas .pipe method. If you're unfamiliar with this amazing feature, you may appreciate this tutorial.

InteractivePreprocessor

This allows you to draw features that you'd like to add to your dataset or your machine learning pipeline. You can use it via tfm.fit(df).transform(df) and df.pipe(tfm).

Datasets

Titanic

This library hosts the popular titanic survivor dataset for demo purposes. The goal of this dataset is to predict who might have survived the titanic disaster.

Fish

The fish market dataset is also hosted in this library. The goal of this dataset is to predict the weight of fish. However, it can also be turned into a classification problem by predicting the species.

Contribution

We're open to ideas for the repository but please discuss any feature you'd like to add before working on a PR. This way folks will know somebody is working on a feature and the implementation can be discussed with the maintainer upfront.

If you want to quickly get started locally you can run the following command to set the local development environment up.

make develop

If you want to run all the tests/checks locally you can run.

make check

This will run flake8, black, pytest and test the documentation pages.

Comments
  • Idea for a simple rule based classifier

    Idea for a simple rule based classifier

    Ideas for a rule based classifier after discussion with

    @koaning: The hope with that idea is that you can define case_when like statements that can be used as a rule based system.

    This has a few benefits.

    1. It's simple to create for a domain person.
    2. It's possible to create a ui/webapp for it.
    3. You might even be able to generate SQL so that the ML system can also "be deployed" in a database.

    This classifier would not have the full power of Python, but is rather a collection of rules entered by domain experts who are not necessarily technical people.

    Rules

    Rules have no structure and are always interpreted as disjunctions (or) and can be composed of conjunctions (and). To resolve conflict they can have a simple priority field.

    Format of the rules could be

    term:
       feature_name op value
    
    op: '=', '<>', '<', '>', '<=', '>='
    
    expr: term 
           | term 'and' term
    
    rule : term '=>' prediction (prio)?
    

    Examples

    • age < 60 => low
    • sex = 'f' and fare <> => high 10

    Rules need not be expressed as plain text, but also a structured format of nested lists/arrays. A parser for a text format like this would be possible with a very simple recursive descent parser.

    API

    class ClassifierBase:
        def predict(self, X):
            return np.array([ self.predict_single(x) for x in X])
        def predict_proba(self, X):
            return np.array([probas[xi] for xi in self.predict(X)])
        def score(self, X, y):
            n = len(y)
            correct = 0
            predictions = self.predict(X)
            for prediction, ground_truth in zip(predictions, y):
                if prediction == ground_truth:
                    correct = correct + 1
            return correct / n
    
    class CaseWhenClassifier(ClassifierBase):
        def predict_single(self, x):
           ...
    
        def .from_sklearn_tree(self, tree):
           ...
    
        def .to_sklearn_tree(self):
           ...
    
        def to_python_code(self, code_style):
          ...
    
        def parse(self, rules_as_text):
          ...
    
    rules = ...
    rule_clf = CaseWhenClassifier(features, categories, rules)
    
    

    Debugging support for plotting pairwise decision boundaries would be helpful.

    opened by DJCordhose 12
  • Can not draw model on jupyter

    Can not draw model on jupyter

    Hi, I'm trying to draw model on jupyter by referring to this link but it doesn't aprear anything.

    image

    jupyter was run on ubuntu machine and accessed from another remote computer in the same subnet.

    bokeh==2.4.3
    human-learn==0.3.1
    ipywidgets==7.7.1
    jupyter==1.0.0
    jupyter-client==7.3.4
    jupyter-console==6.4.4
    jupyter-core==4.11.1
    jupyter-server==1.18.1
    jupyterlab==3.4.4
    jupyterlab-pygments==0.2.2
    jupyterlab-server==2.15.0
    jupyterlab-widgets==1.1.1
    
    opened by didw 9
  • Adding a tooltip would help make decision on where to draw the line when no labels are available

    Adding a tooltip would help make decision on where to draw the line when no labels are available

    Hey there! Human learn has been super helpful so far. One thing I am a bit missing is the ability to see some of the underlying data about each data point. It would be very helpful to have a tooltip and having the option to pick a list of columns from the data frame to see in the tooltip.

    Right now, I am using Plotly separately to do that which allows me to more easily explore clusters. Then I try to find this cluster and draw on it.

    Screenshot 2021-01-14 19:22:32

    What do you think? Cheers, Nicolas

    opened by nbeuchat 7
  • InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    Hi there! I noticed that when the column used for the labels or the color in an InteractiveCharts contains more than 5 unique values, adding a chart throws an error because the number of available colors in _colors is too low.

    # group_kind contains 7 unique values
    clf = InteractiveCharts(dfs, labels=["spam", "not_spam"], color="group_kind")
    clf.add_chart(x="umap_1", y="umap_2")
    

    It throws the error:

    KeyError                                  Traceback (most recent call last)
    <ipython-input-108-2daa1de2581a> in <module>
    ----> 1 clf.add_chart(x="umap_1", y="umap_2")
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend)
         84         ```
         85         """
    ---> 86         chart = SingleInteractiveChart(
         87             dataf=self.dataf.copy(),
         88             labels=self.labels,
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in __init__(self, dataf, labels, x, y, size, alpha, width, height, color, legend)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in <listcomp>(.0)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    KeyError: 'bulletin_board'
    

    Maybe using a colormap instead of a fixed set of colors would fix the issue?

    opened by nbeuchat 5
  • Can't draw with InteractiveCharts

    Can't draw with InteractiveCharts

    Hi, I'm trying the library just like I've seen on https://calmcode.io/human-learn/draw.html, but with my own data. This is what I got:

    from hulearn.experimental.interactive import InteractiveCharts
    clf = InteractiveCharts(df_labeled, labels="cluster")
    

    BokehJS 2.2.1 successfully loaded

    clf.add_chart(x='dst_ip',y='avg_duration')
    

    The graph appears, data is colored as expected and I can interact with it (zoom and so), but I can't draw the areas.

    I'm using Python 3.7.3, IPython 7.14.0 and Jupyter 5.7.8

    opened by jartigag 5
  • charts not showing up in Visual Studio Code notebook

    charts not showing up in Visual Studio Code notebook

    I am trying basically to reproduce the PyData Berlin environment using human-learn with sentence embeddings and UMAP so that I can draw boundaries, explore, and quickly label text data.

    The problem I am having is that the human-learn charts are not rendering in the VSC notebook. VSC is using Jupyter for the notebook and I am on Windows. I can render Pyplot, Seaborn, even Bokeh into the notebooks but the human-learn charts do not display:

    image

    Is anyone else having this issue? Is there some Jupyter extension I need or some Jupyter command I need to run? Bokeh is 2.3.2, human-learn is 0.3.1

    opened by mschmill 4
  • Running into a traceback error when importing the interactive charts module

    Running into a traceback error when importing the interactive charts module

    I am trying to run the interactive classifier notebook downloaded from the link at the bottom of this page - https://koaning.github.io/human-learn/guide/drawing-classifier/drawing.html.

    This is being run on a Windows x86-64 laptop, with the latest minconda3, python3.8 and jupyter-lab. I run into a traceback error on cell 3 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart

    ImportError                               Traceback (most recent call last)
    <ipython-input-3-9933ce75800d> in <module>()
    ----> 1 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart
    
    ImportError: cannot import name 'InteractiveChart' from 'hulearn.experimental.interactive' (C:\<mypath>\miniconda3\envs\myenv\lib\site-packages\hulearn\experimental\interactive.py)
    

    Not able to figure out what's up; issue reproduces on a unix environment (on Mac) as well.

    opened by aishnaga 4
  • Bokeh Port Error

    Bokeh Port Error

    Sometimes I hit this error:

    ERROR:bokeh.server.views.ws:Refusing websocket connection from Origin 'http://localhost:8889';                       use --allow-websocket-origin=localhost:8889 or set BOKEH_ALLOW_WS_ORIGIN=localhost:8889 to permit this; currently we allow origins {'localhost:8888'}
    WARNING:tornado.access:403 GET /ws (::1) 1.65ms
    

    Would be nice to get an automated fix for this.

    opened by koaning 3
  • geos_c.dll missing

    geos_c.dll missing

    from hulearn.preprocessing import InteractivePreprocessor
    tfm = InteractivePreprocessor(json_desc=charts.data())
    
    df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    

    gives error :

    
    ---------------------------------------------------------------------------
    FileNotFoundError                         Traceback (most recent call last)
    ~\AppData\Local\Temp/ipykernel_28956/1501149949.py in <module>
    ----> 1 from hulearn.preprocessing import InteractivePreprocessor
          2 tfm = InteractivePreprocessor(json_desc=charts.data())
          3 
          4 df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\__init__.py in <module>
          1 from hulearn.preprocessing.pipetransformer import PipeTransformer
    ----> 2 from hulearn.preprocessing.interactivepreprocessor import InteractivePreprocessor
          3 
          4 __all__ = ["PipeTransformer", "InteractivePreprocessor"]
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\interactivepreprocessor.py in <module>
          4 import numpy as np
          5 import pandas as pd
    ----> 6 from shapely.geometry import Point
          7 from shapely.geometry.polygon import Polygon
          8 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\__init__.py in <module>
          2 """
          3 
    ----> 4 from .base import CAP_STYLE, JOIN_STYLE
          5 from .geo import box, shape, asShape, mapping
          6 from .point import Point, asPoint
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\base.py in <module>
         17 
         18 from shapely.affinity import affine_transform
    ---> 19 from shapely.coords import CoordinateSequence
         20 from shapely.errors import WKBReadingError, WKTReadingError
         21 from shapely.geos import WKBWriter, WKTWriter
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\coords.py in <module>
          6 from ctypes import byref, c_double, c_uint
          7 
    ----> 8 from shapely.geos import lgeos
          9 from shapely.topology import Validating
         10 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geos.py in <module>
        147     if os.getenv('CONDA_PREFIX', ''):
        148         # conda package.
    --> 149         _lgeos = CDLL(os.path.join(sys.prefix, 'Library', 'bin', 'geos_c.dll'))
        150     else:
        151         try:
    
    ~\Anaconda3\envs\human-learn\lib\ctypes\__init__.py in __init__(self, name, mode, handle, use_errno, use_last_error, winmode)
        380 
        381         if handle is None:
    --> 382             self._handle = _dlopen(self._name, mode)
        383         else:
        384             self._handle = handle
    
    FileNotFoundError: Could not find module 'C:\Users\BORG7803\Anaconda3\envs\human-learn\Library\bin\geos_c.dll' (or one of its dependencies). Try using the full path with constructor syntax.
    
    opened by Borg93 2
  • AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    Hi Vincent,

    I was particularly impressed by how we could classify the data by just drawing. Kudos to you.

    However, I have been trying to implement the same in a different dataset but it's repeatedly throwing the below error .

    I am also linking my notebook just in case : https://www.kaggle.com/nishantrock/notebook8935105440

    Do suggest why this error is happening. I've tried it multiple times but it throws the same error.


    AttributeError Traceback (most recent call last) in ----> 1 clf.add_chart(x = 'Health Indicator', y = 'Reco_Policy_Premium')

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend) 97 ) 98 self.charts.append(chart) ---> 99 chart.show() 100 101 def data(self):

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in show(self) 199 200 def show(self): --> 201 show(self.app) 202 203 def _replace_xy(self, data):

    /opt/conda/lib/python3.7/site-packages/bokeh/io/showing.py in show(obj, browser, new, notebook_handle, notebook_url, **kw) 135 # in Tornado) just in order to show a non-server object 136 if is_application or callable(obj): --> 137 return run_notebook_hook(state.notebook_type, 'app', obj, state, notebook_url, **kw) 138 139 return _show_with_state(obj, state, browser, new, notebook_handle=notebook_handle)

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in run_notebook_hook(notebook_type, action, *args, **kw) 296 if _HOOKS[notebook_type][action] is None: 297 raise RuntimeError("notebook hook for %r did not install %r action" % notebook_type, action) --> 298 return _HOOKS[notebook_type][action](*args, **kw) 299 300 #-----------------------------------------------------------------------------

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in show_app(app, state, notebook_url, port, **kw) 463 464 from tornado.ioloop import IOLoop --> 465 from ..server.server import Server 466 467 loop = IOLoop.current()

    /opt/conda/lib/python3.7/site-packages/bokeh/server/server.py in 39 # External imports 40 from tornado import version as tornado_version ---> 41 from tornado.httpserver import HTTPServer 42 from tornado.ioloop import IOLoop 43

    /opt/conda/lib/python3.7/site-packages/tornado/httpserver.py in 30 31 from tornado.escape import native_str ---> 32 from tornado.http1connection import HTTP1ServerConnection, HTTP1ConnectionParameters 33 from tornado import httputil 34 from tornado import iostream

    /opt/conda/lib/python3.7/site-packages/tornado/http1connection.py in 32 from tornado import gen 33 from tornado import httputil ---> 34 from tornado import iostream 35 from tornado.log import gen_log, app_log 36 from tornado.util import GzipDecompressor

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in 208 209 --> 210 class BaseIOStream(object): 211 """A utility class to write to and read from a non-blocking file or socket. 212

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in BaseIOStream() 284 self._closed = False 285 --> 286 def fileno(self) -> Union[int, ioloop._Selectable]: 287 """Returns the file descriptor for this stream.""" 288 raise NotImplementedError()

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    opened by 123nishant 2
  • Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Currently, the library does not support adding custom title rather the x and y labels passed to the Interactive chart becomes the title

    self.plot = figure(width=width, height=height, title=f"{x} vs. {y}")

    as shown above we can add common accessors to deal with this?

    opened by tvash 2
  • Please cover a regression example

    Please cover a regression example

    Hi Vincent. I'm super into this framework. As a domain expert, I see some helpful ise cases with this tool involving regression. However, I'm not confident to apply regression as no example are provided.

    opened by FrancyJGLisboa 1
  • Raise `ValueErrors` on incorrect plot input.

    Raise `ValueErrors` on incorrect plot input.

    I noticed on reviewing this PR that SingleInteractiveChart does not check if the inputs make sense with regards to the dataframe that is passed in. We don't want to create an extra SingleInteractiveChart under the InteractiveCharts object because this causes side effects (unneeded json data).

    Let's add some ValueErrors there.

    opened by koaning 0
Releases(0.2.5)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022