Natural Intelligence is still a pretty good idea.

Overview

Downloads Version Code style: black DOI

Human Learn

Machine Learning models should play by the rules, literally.

Project Goal

Back in the old days, it was common to write rule-based systems. Systems that do;

Nowadays, it's much more fashionable to use machine learning instead. Something like;

We started wondering if we might have lost something in this transition. Sure, machine learning covers a lot of ground but it is also capable of making bad decisions. We need to remain careful about hype. We also shouldn't forget that many classification problems can be handled by natural intelligence too. If nothing else, it'd sure be a sensible benchmark.

This package contains scikit-learn compatible tools that should make it easier to construct and benchmark rule based systems that are designed by humans. You can also use it in combination with ML models.

Installation

You can install this tool via pip.

python -m pip install human-learn

The project builds on top of a modern installation of scikit-learn and pandas. It also uses bokeh for interactive jupyter elements, shapely for the point-in-poly algorithms and clumper to deal with json datastructures.

Documentation

Detailed documentation of this tool can be found here.

A free video course can be found on calmcode.io.

Features

This library hosts a couple of models that you can play with.

Interactive Drawings

This tool allows you to draw over your datasets. These drawings can later be converted to models or to preprocessing tools.

Classification Models

FunctionClassifier

This allows you to define a function that can make classification predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveClassifier

This allows you to draw decision boundaries in interactive charts to create a model. You can create charts interactively in the notebook and export it as a scikit-learn compatible model.

Regression Models

FunctionRegressor

This allows you to define a function that can make regression predictions. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

Outlier Detection Models

FunctionOutlierDetector

This allows you to define a function that can declare outliers. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search.

InteractiveOutlierDetector

This allows you to draw decision boundaries in interactive charts to create a model. If a point falls outside of these boundaries we might be able to declare it an outlier. There's a threshold parameter for how strict you might want to be.

Preprocessing Models

PipeTransformer

This allows you to define a function that can handle preprocessing. It's constructed in such a way that you can use the arguments of the function as a parameter that you can benchmark in a grid-search. This is especially powerful in combination with the pandas .pipe method. If you're unfamiliar with this amazing feature, you may appreciate this tutorial.

InteractivePreprocessor

This allows you to draw features that you'd like to add to your dataset or your machine learning pipeline. You can use it via tfm.fit(df).transform(df) and df.pipe(tfm).

Datasets

Titanic

This library hosts the popular titanic survivor dataset for demo purposes. The goal of this dataset is to predict who might have survived the titanic disaster.

Fish

The fish market dataset is also hosted in this library. The goal of this dataset is to predict the weight of fish. However, it can also be turned into a classification problem by predicting the species.

Contribution

We're open to ideas for the repository but please discuss any feature you'd like to add before working on a PR. This way folks will know somebody is working on a feature and the implementation can be discussed with the maintainer upfront.

If you want to quickly get started locally you can run the following command to set the local development environment up.

make develop

If you want to run all the tests/checks locally you can run.

make check

This will run flake8, black, pytest and test the documentation pages.

Comments
  • Idea for a simple rule based classifier

    Idea for a simple rule based classifier

    Ideas for a rule based classifier after discussion with

    @koaning: The hope with that idea is that you can define case_when like statements that can be used as a rule based system.

    This has a few benefits.

    1. It's simple to create for a domain person.
    2. It's possible to create a ui/webapp for it.
    3. You might even be able to generate SQL so that the ML system can also "be deployed" in a database.

    This classifier would not have the full power of Python, but is rather a collection of rules entered by domain experts who are not necessarily technical people.

    Rules

    Rules have no structure and are always interpreted as disjunctions (or) and can be composed of conjunctions (and). To resolve conflict they can have a simple priority field.

    Format of the rules could be

    term:
       feature_name op value
    
    op: '=', '<>', '<', '>', '<=', '>='
    
    expr: term 
           | term 'and' term
    
    rule : term '=>' prediction (prio)?
    

    Examples

    • age < 60 => low
    • sex = 'f' and fare <> => high 10

    Rules need not be expressed as plain text, but also a structured format of nested lists/arrays. A parser for a text format like this would be possible with a very simple recursive descent parser.

    API

    class ClassifierBase:
        def predict(self, X):
            return np.array([ self.predict_single(x) for x in X])
        def predict_proba(self, X):
            return np.array([probas[xi] for xi in self.predict(X)])
        def score(self, X, y):
            n = len(y)
            correct = 0
            predictions = self.predict(X)
            for prediction, ground_truth in zip(predictions, y):
                if prediction == ground_truth:
                    correct = correct + 1
            return correct / n
    
    class CaseWhenClassifier(ClassifierBase):
        def predict_single(self, x):
           ...
    
        def .from_sklearn_tree(self, tree):
           ...
    
        def .to_sklearn_tree(self):
           ...
    
        def to_python_code(self, code_style):
          ...
    
        def parse(self, rules_as_text):
          ...
    
    rules = ...
    rule_clf = CaseWhenClassifier(features, categories, rules)
    
    

    Debugging support for plotting pairwise decision boundaries would be helpful.

    opened by DJCordhose 12
  • Can not draw model on jupyter

    Can not draw model on jupyter

    Hi, I'm trying to draw model on jupyter by referring to this link but it doesn't aprear anything.

    image

    jupyter was run on ubuntu machine and accessed from another remote computer in the same subnet.

    bokeh==2.4.3
    human-learn==0.3.1
    ipywidgets==7.7.1
    jupyter==1.0.0
    jupyter-client==7.3.4
    jupyter-console==6.4.4
    jupyter-core==4.11.1
    jupyter-server==1.18.1
    jupyterlab==3.4.4
    jupyterlab-pygments==0.2.2
    jupyterlab-server==2.15.0
    jupyterlab-widgets==1.1.1
    
    opened by didw 9
  • Adding a tooltip would help make decision on where to draw the line when no labels are available

    Adding a tooltip would help make decision on where to draw the line when no labels are available

    Hey there! Human learn has been super helpful so far. One thing I am a bit missing is the ability to see some of the underlying data about each data point. It would be very helpful to have a tooltip and having the option to pick a list of columns from the data frame to see in the tooltip.

    Right now, I am using Plotly separately to do that which allows me to more easily explore clusters. Then I try to find this cluster and draw on it.

    Screenshot 2021-01-14 19:22:32

    What do you think? Cheers, Nicolas

    opened by nbeuchat 7
  • InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    InteractiveCharts with more than 5 unique labels throws an error when adding a new chart

    Hi there! I noticed that when the column used for the labels or the color in an InteractiveCharts contains more than 5 unique values, adding a chart throws an error because the number of available colors in _colors is too low.

    # group_kind contains 7 unique values
    clf = InteractiveCharts(dfs, labels=["spam", "not_spam"], color="group_kind")
    clf.add_chart(x="umap_1", y="umap_2")
    

    It throws the error:

    KeyError                                  Traceback (most recent call last)
    <ipython-input-108-2daa1de2581a> in <module>
    ----> 1 clf.add_chart(x="umap_1", y="umap_2")
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend)
         84         ```
         85         """
    ---> 86         chart = SingleInteractiveChart(
         87             dataf=self.dataf.copy(),
         88             labels=self.labels,
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in __init__(self, dataf, labels, x, y, size, alpha, width, height, color, legend)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    ~/anaconda3/envs/nlp_fb_posts_topics/lib/python3.8/site-packages/hulearn/experimental/interactive.py in <listcomp>(.0)
        160                 color_labels = list(dataf[self.color_column].unique())
        161                 d = {k: col for k, col in zip(color_labels, self._colors)}
    --> 162                 dataf = dataf.assign(color=[d[lab] for lab in dataf[self.color_column]])
        163             self.source = ColumnDataSource(data=dataf)
        164             self.labels = labels
    
    KeyError: 'bulletin_board'
    

    Maybe using a colormap instead of a fixed set of colors would fix the issue?

    opened by nbeuchat 5
  • Can't draw with InteractiveCharts

    Can't draw with InteractiveCharts

    Hi, I'm trying the library just like I've seen on https://calmcode.io/human-learn/draw.html, but with my own data. This is what I got:

    from hulearn.experimental.interactive import InteractiveCharts
    clf = InteractiveCharts(df_labeled, labels="cluster")
    

    BokehJS 2.2.1 successfully loaded

    clf.add_chart(x='dst_ip',y='avg_duration')
    

    The graph appears, data is colored as expected and I can interact with it (zoom and so), but I can't draw the areas.

    I'm using Python 3.7.3, IPython 7.14.0 and Jupyter 5.7.8

    opened by jartigag 5
  • charts not showing up in Visual Studio Code notebook

    charts not showing up in Visual Studio Code notebook

    I am trying basically to reproduce the PyData Berlin environment using human-learn with sentence embeddings and UMAP so that I can draw boundaries, explore, and quickly label text data.

    The problem I am having is that the human-learn charts are not rendering in the VSC notebook. VSC is using Jupyter for the notebook and I am on Windows. I can render Pyplot, Seaborn, even Bokeh into the notebooks but the human-learn charts do not display:

    image

    Is anyone else having this issue? Is there some Jupyter extension I need or some Jupyter command I need to run? Bokeh is 2.3.2, human-learn is 0.3.1

    opened by mschmill 4
  • Running into a traceback error when importing the interactive charts module

    Running into a traceback error when importing the interactive charts module

    I am trying to run the interactive classifier notebook downloaded from the link at the bottom of this page - https://koaning.github.io/human-learn/guide/drawing-classifier/drawing.html.

    This is being run on a Windows x86-64 laptop, with the latest minconda3, python3.8 and jupyter-lab. I run into a traceback error on cell 3 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart

    ImportError                               Traceback (most recent call last)
    <ipython-input-3-9933ce75800d> in <module>()
    ----> 1 from hulearn.experimental.interactive import InteractiveCharts, InteractiveChart
    
    ImportError: cannot import name 'InteractiveChart' from 'hulearn.experimental.interactive' (C:\<mypath>\miniconda3\envs\myenv\lib\site-packages\hulearn\experimental\interactive.py)
    

    Not able to figure out what's up; issue reproduces on a unix environment (on Mac) as well.

    opened by aishnaga 4
  • Bokeh Port Error

    Bokeh Port Error

    Sometimes I hit this error:

    ERROR:bokeh.server.views.ws:Refusing websocket connection from Origin 'http://localhost:8889';                       use --allow-websocket-origin=localhost:8889 or set BOKEH_ALLOW_WS_ORIGIN=localhost:8889 to permit this; currently we allow origins {'localhost:8888'}
    WARNING:tornado.access:403 GET /ws (::1) 1.65ms
    

    Would be nice to get an automated fix for this.

    opened by koaning 3
  • geos_c.dll missing

    geos_c.dll missing

    from hulearn.preprocessing import InteractivePreprocessor
    tfm = InteractivePreprocessor(json_desc=charts.data())
    
    df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    

    gives error :

    
    ---------------------------------------------------------------------------
    FileNotFoundError                         Traceback (most recent call last)
    ~\AppData\Local\Temp/ipykernel_28956/1501149949.py in <module>
    ----> 1 from hulearn.preprocessing import InteractivePreprocessor
          2 tfm = InteractivePreprocessor(json_desc=charts.data())
          3 
          4 df.pipe(tfm.pandas_pipe).loc[lambda d: d['group'] != 0].sample(10)
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\__init__.py in <module>
          1 from hulearn.preprocessing.pipetransformer import PipeTransformer
    ----> 2 from hulearn.preprocessing.interactivepreprocessor import InteractivePreprocessor
          3 
          4 __all__ = ["PipeTransformer", "InteractivePreprocessor"]
    
    ~\AppData\Roaming\Python\Python39\site-packages\hulearn\preprocessing\interactivepreprocessor.py in <module>
          4 import numpy as np
          5 import pandas as pd
    ----> 6 from shapely.geometry import Point
          7 from shapely.geometry.polygon import Polygon
          8 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\__init__.py in <module>
          2 """
          3 
    ----> 4 from .base import CAP_STYLE, JOIN_STYLE
          5 from .geo import box, shape, asShape, mapping
          6 from .point import Point, asPoint
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geometry\base.py in <module>
         17 
         18 from shapely.affinity import affine_transform
    ---> 19 from shapely.coords import CoordinateSequence
         20 from shapely.errors import WKBReadingError, WKTReadingError
         21 from shapely.geos import WKBWriter, WKTWriter
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\coords.py in <module>
          6 from ctypes import byref, c_double, c_uint
          7 
    ----> 8 from shapely.geos import lgeos
          9 from shapely.topology import Validating
         10 
    
    ~\AppData\Roaming\Python\Python39\site-packages\shapely\geos.py in <module>
        147     if os.getenv('CONDA_PREFIX', ''):
        148         # conda package.
    --> 149         _lgeos = CDLL(os.path.join(sys.prefix, 'Library', 'bin', 'geos_c.dll'))
        150     else:
        151         try:
    
    ~\Anaconda3\envs\human-learn\lib\ctypes\__init__.py in __init__(self, name, mode, handle, use_errno, use_last_error, winmode)
        380 
        381         if handle is None:
    --> 382             self._handle = _dlopen(self._name, mode)
        383         else:
        384             self._handle = handle
    
    FileNotFoundError: Could not find module 'C:\Users\BORG7803\Anaconda3\envs\human-learn\Library\bin\geos_c.dll' (or one of its dependencies). Try using the full path with constructor syntax.
    
    opened by Borg93 2
  • AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    Hi Vincent,

    I was particularly impressed by how we could classify the data by just drawing. Kudos to you.

    However, I have been trying to implement the same in a different dataset but it's repeatedly throwing the below error .

    I am also linking my notebook just in case : https://www.kaggle.com/nishantrock/notebook8935105440

    Do suggest why this error is happening. I've tried it multiple times but it throws the same error.


    AttributeError Traceback (most recent call last) in ----> 1 clf.add_chart(x = 'Health Indicator', y = 'Reco_Policy_Premium')

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in add_chart(self, x, y, size, alpha, width, height, legend) 97 ) 98 self.charts.append(chart) ---> 99 chart.show() 100 101 def data(self):

    /opt/conda/lib/python3.7/site-packages/hulearn/experimental/interactive.py in show(self) 199 200 def show(self): --> 201 show(self.app) 202 203 def _replace_xy(self, data):

    /opt/conda/lib/python3.7/site-packages/bokeh/io/showing.py in show(obj, browser, new, notebook_handle, notebook_url, **kw) 135 # in Tornado) just in order to show a non-server object 136 if is_application or callable(obj): --> 137 return run_notebook_hook(state.notebook_type, 'app', obj, state, notebook_url, **kw) 138 139 return _show_with_state(obj, state, browser, new, notebook_handle=notebook_handle)

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in run_notebook_hook(notebook_type, action, *args, **kw) 296 if _HOOKS[notebook_type][action] is None: 297 raise RuntimeError("notebook hook for %r did not install %r action" % notebook_type, action) --> 298 return _HOOKS[notebook_type][action](*args, **kw) 299 300 #-----------------------------------------------------------------------------

    /opt/conda/lib/python3.7/site-packages/bokeh/io/notebook.py in show_app(app, state, notebook_url, port, **kw) 463 464 from tornado.ioloop import IOLoop --> 465 from ..server.server import Server 466 467 loop = IOLoop.current()

    /opt/conda/lib/python3.7/site-packages/bokeh/server/server.py in 39 # External imports 40 from tornado import version as tornado_version ---> 41 from tornado.httpserver import HTTPServer 42 from tornado.ioloop import IOLoop 43

    /opt/conda/lib/python3.7/site-packages/tornado/httpserver.py in 30 31 from tornado.escape import native_str ---> 32 from tornado.http1connection import HTTP1ServerConnection, HTTP1ConnectionParameters 33 from tornado import httputil 34 from tornado import iostream

    /opt/conda/lib/python3.7/site-packages/tornado/http1connection.py in 32 from tornado import gen 33 from tornado import httputil ---> 34 from tornado import iostream 35 from tornado.log import gen_log, app_log 36 from tornado.util import GzipDecompressor

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in 208 209 --> 210 class BaseIOStream(object): 211 """A utility class to write to and read from a non-blocking file or socket. 212

    /opt/conda/lib/python3.7/site-packages/tornado/iostream.py in BaseIOStream() 284 self._closed = False 285 --> 286 def fileno(self) -> Union[int, ioloop._Selectable]: 287 """Returns the file descriptor for this stream.""" 288 raise NotImplementedError()

    AttributeError: module 'tornado.ioloop' has no attribute '_Selectable'

    opened by 123nishant 2
  • Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Adding common accessor for changing Chart Title, Legend Names, x label, y label etc

    Currently, the library does not support adding custom title rather the x and y labels passed to the Interactive chart becomes the title

    self.plot = figure(width=width, height=height, title=f"{x} vs. {y}")

    as shown above we can add common accessors to deal with this?

    opened by tvash 2
  • Please cover a regression example

    Please cover a regression example

    Hi Vincent. I'm super into this framework. As a domain expert, I see some helpful ise cases with this tool involving regression. However, I'm not confident to apply regression as no example are provided.

    opened by FrancyJGLisboa 1
  • Raise `ValueErrors` on incorrect plot input.

    Raise `ValueErrors` on incorrect plot input.

    I noticed on reviewing this PR that SingleInteractiveChart does not check if the inputs make sense with regards to the dataframe that is passed in. We don't want to create an extra SingleInteractiveChart under the InteractiveCharts object because this causes side effects (unneeded json data).

    Let's add some ValueErrors there.

    opened by koaning 0
Releases(0.2.5)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023