This is the dataset and code release of the OpenRooms Dataset.

Overview

OpenRooms Dataset Release

Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying Yeh, Rui Zhu, Nitesh Gundavarapu, Jia Shi, Sai Bi, Zexiang Xu, Hong-Xing Yu, Kalyan Sunkavalli, Miloš Hašan, Ravi Ramamoorthi, Manmohan Chandraker

Dataset Overview

pipeline

This is the webpage for downloading the OpenRooms dataset. We will first introduce the rendered images and various ground-truths. Later, we will introduce how to render your own images based on the OpenRooms dataset creation pipeline. For each type of data, we offer two kinds of formats, zip files and individual folders, so that users can choose whether to download the whole dataset more efficiently or download individual folders for different scenes. To download the file, we recommend the tool Rclone, otherwise users may suffer from slow downloading speed and instability. If you have any questions, please email to [email protected].

We render six versions of images for all the scenes. Those rendered results are saved in 6 folders: main_xml, main_xml1, mainDiffMat_xml, mainDiffMat_xml1, mainDiffLight_xml and mainDiffLight_xml1. All 6 versions are built with the same CAD models. main_xml, mainDiffMat_xml, mainDiffLight_xml share one set of camera views while main_xml1, mainDiffMat_xml1 and mainDiffLight_xml1 share the other set of camera views. main_xml(1) and mainDiffMat_xml(1) have the same lighting but different materials while main_xml(1) and mainDiffLight_xml(1) have the same materials but different lighting. Both the lighting and material configuration of main_xml and main_xml1 are different. We believe this configuration can potentially help us develope novel applications for image editing. Two example scenes from main_xml, mainDiffMat_xml and mainDiffLight_xml are shown in the below.

config

News: We currently only release the rendered images of the dataset. All ground-truths will be released in a few days. The dataset creation pipeline will also be released soon.

Rendered Images and Ground-truths

All rendered images and the corresponding ground-truths are saved in folder data/rendering/data/. In the following, we will detail each type of rendered data and how to read and interpret them. Two example scenes with images and all ground-truths are included in Demo and Demo.zip.

  1. Images and Images.zip: The 480 × 640 HDR images im_*.hdr, which can be read with the python command.

    im = cv2.imread('im_1.hdr', -1)[:, :, ::-1]

    We render images for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1).

  2. Material and Material.zip: The 480 × 640 diffuse albedo maps imbaseColor_*.png and roughness map imroughness_*.png. Note that the diffuse albedo map is saved in sRGB space. To load it into linear RGB space, we can use the following python commands. The roughness map is saved in linear space and can be read directly.

    im = cv2.imread('imbaseColor_1.hdr')[:, :, ::-1]
    im = (im.astype(np.float32 ) / 255.0) ** (2.2)

    We only render the diffuse albedo maps and roughness maps for main_xml(1) and mainDiffMat_xml(1) because mainDiffLight_xml(1) share the same material maps with the main_xml(1).

  3. Geometry and Geometry.zip: The 480 × 640 normal maps imnomral_*.png and depth maps imdepth_*.dat. The R, G, B channel of the normal map corresponds to right, up, backward direction of the image plane. To load the depth map, we can use the following python commands.

    with open('imdepth_1.dat', 'rb') as fIn:
        # Read the height and width of depth
        hBuffer = fIn.read(4)
        height = struct.unpack('i', hBuffer)[0]
        wBuffer = fIn.read(4)
        width = struct.unpack('i', wBuffer)[0]
        # Read depth 
        dBuffer = fIn.read(4 * width * height )
        depth = np.array(
            struct.unpack('f' * height * width, dBuffer ), 
            dtype=np.float32 )
        depth = depth.reshape(height, width)

    We render normal maps for main_xml(1) and mainDiffMat_xml(1), and depth maps for main_xml(1).

  4. Mask and Mask.zip: The 480 × 460 grey scale mask immask_*.png for light sources. The pixel value 0 represents the region of environment maps. The pixel value 0.5 represents the region of lamps. Otherwise, the pixel value will be 1. We render the ground-truth masks for main_xml(1) and mainDiffLight_xml(1).

  5. SVLighting: The (120 × 16) × (160 × 32) per-pixel environment maps imenv_*.hdr. The spatial resolution is 120 x 160 while the environment map resolution is 16 x 32. To read the per-pixel environment maps, we can use the following python commands.

    # Read the envmap of resolution 1920 x 5120 x 3 in RGB format 
    env = cv2.imread('imenv_1', -1)[:, :, ::-1]
    # Reshape and permute the per-pixel environment maps
    env = env.reshape(120, 16, 160, 32, 3)
    env = env.transpose(0, 2, 1, 3, 4)

    We render per-pixel environment maps for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1). Since the total size of per-pixel environment maps is 4.0 TB, we do not provide an extra .zip format for downloading. Please consider using the tool Rclone if you hope to download all the per-pixel environment maps.

  6. SVSG and SVSG.zip: The ground-truth spatially-varying spherical Gaussian (SG) parameters imsgEnv_*.h5, computed from this optimization code. We generate the ground-truth SG parameters for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1). For the detailed format, please refer to the optimization code.

  7. Shading and Shading.zip: The 120 × 160 diffuse shading imshading_*.hdr computed by intergrating the per-pixel environment maps. We render shading for main_xml(1), mainDiffMat_xml(1) and mainDiffLight_xml(1).

  8. SVLightingDirect and SVLightingDirect.zip: The (30 × 16) × (40 × 32) per-pixel environment maps with direct illumination imenvDirect_*.hdr only. The spatial resolution is 30 × 40 while the environment maps resolution is 16 × 32. The direct per-pixel environment maps can be load the same way as the per-pixel environment maps. We only render direct per-pixel environment maps for main_xml(1) and mainDiffLight_xml(1) because the direct illumination of mainDiffMat_xml(1) is the same as main_xml(1).

  9. ShadingDirect and ShadingDirect.zip: The 120 × 160 direct shading imshadingDirect_*.rgbe. To load the direct shading, we can use the following python command.

    im = cv2.imread('imshadingDirect_1.rgbe', -1)[:, :, ::-1]

    Again, we only render direct shading for main_xml(1) and mainDiffLight_xml(1)

  10. SemanticLabel and SemanticLabel.zip: The 480 × 640 semantic segmentation label imsemLabel_*.npy. We provide semantic labels for 45 classes of commonly seen objects and layout for indoor scenes. The 45 classes can be found in semanticLabels.txt. We only render the semantic labels for main_xml(1).

  11. LightSource and LightSource.zip: The light source information, including geometry, shadow and direct shading of each light source. In each scene directory, light_x directory corresponds to im_x.hdr, where x = 0, 1, 2, 3 ... In each light_x directory, you will see files with numbers in their names. The numbers correspond to the light source ID, i.e. if the IDs are from 0 to 4, then there are 5 light sources in this scene.

    • Geometry: We provide geometry annotation for windows and lamps box_*.dat for main_xml(1) only. To read the annotation, we can use the following python commmands.
      with open('box_0.dat', 'rb')  as fIn:
          info = pickle.load(fIn )
      There are 3 items saved in the dictionary, which we list blow.
      • isWindow: True if the light source is a window, false if the light source is a lamp.
      • box3D: The 3D bounding box of the light source, including center center, orientation xAxis, yAxis, zAxis and size xLen, yLen, zLen.
      • box2D: The 2D bounding box of the light source on the image plane x1, y1, x2, y2.
    • Mask: The 120 × 160 2D binary masks for light sources mask*.png. We only provide the masks for main_xml(1).
    • Direct shading: The 120 × 160 direct shading for each light source imDS*.rgbe. We provide the direction shading for main_xml(1) and mainDiffLight_xml(1).
    • Direct shading without occlusion: The 120 × 160 direct shading with outocclusion for each light source imNoOcclu*.rgbe. We provide the direction shading for main_xml(1) and mainDiffLight_xml(1).
    • Shadow: The 120 × 160 shadow maps for each light source imShadow*.png. We render the shadow map for main_xml(1) only.
  12. Friction and Friction.zip: The friction coefficients computed from our SVBRDF following the method proposed by Zhang et al. We compute the friction coefficients for main_xml(1) and mainDiffLight_xml(1)

Dataset Creation

  1. GPU renderer: The Optix-based GPU path tracer for rendering. Please refer to the github repository for detailed instructions.
  2. Tileable texture synthesis: The tielable texture synthesis code to make sure that the SVBRDF maps are tileable. Please refer to the github repository for more details.
  3. Spherical gaussian optimization: The code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. Please refer to the github repository for detailed instructions.

The CAD models, environment maps, materials and code required to recreate the dataset will be released soon.

Applications

  1. Inverse Rendering: Trained on our dataset, we achieved state-of-the-arts on some inverse rendering metrics, especially the lighting estimation. Please refer to our github repository for the training and testing code.
  2. Robotics: Our robotics applications will come soon.

Related Datasets

The OpenRooms dataset is built on the datasets listed below. We thank their creators for the excellent contribution. Please refer to prior datasets for license issues and terms of use if you hope to use them to create your own dataset.

  1. ScanNet dataset: The real 3D scans of indoor scenes.
  2. Scan2cad dataset: The alignment of CAD models to the scanned point clouds.
  3. Laval outdoor lighting dataset: HDR outdoor environment maps
  4. HDRI Haven lighting dataset: HDR outdoor environment maps
  5. PartNet dataset: CAD models
  6. Adobe Stock: High-quality microfacet SVBRDF texture maps. Please license materials from the Adobe website.
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023