[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

Related tags

Deep LearningSGNAS
Overview

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator

Overview

This is the entire codebase for the paper Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator

In one-shot NAS, sub-networks need to be searched from the supernet to meet different hardware constraints. However, the search cost is high and N times of searches are needed for N different constraints. In this work, we propose a novel search strategy called architecture generator to search sub-networks by generating them, so that the search process can be much more efficient and flexible. With the trained architecture generator, given target hardware constraints as the input, N good architectures can be generated for N constraints by just one forward pass without researching and supernet retraining. Moreover, we propose a novel single-path supernet, called unified supernet, to further improve search efficiency and reduce GPU memory consumption of the architecture generator. With the architecture generator and the unified supernet, we pro- pose a flexible and efficient one-shot NAS framework, called Searching by Generating NAS (SGNAS). The search time of SGNAS for N different hardware constraints is only 5 GPU hours, which is 4N times faster than previous SOTA single-path methods. The top1-accuracy of SGNAS on ImageNet is 77.1%, which is comparable with the SOTAs.

sgnas_framework

Model Zoo

Model FLOPs (M) Param (M) Top-1 (%) Weights
SGNAS-A 373 6.0 77.1 Google drive
SGNAS-B 326 5.5 76.8 Google drive
SGNAS-C 281 4.7 76.2 Google drive

Requirements

pip3 install -r requirements.txt
  • [Optional] Transfer Imagenet dataset into LMDB format by utils/folder2lmdb.py
    • With LMDB format, you can speed up entire training process(30 mins per epoch with 4 GeForce GTX 1080 Ti)

Getting Started

Search

Training Unified Supernet

  • For Imagenet training, set the config file ./config_file/imagenet_config.yml. For cifar100 training, set the config file ./config_file/config.yml.
  • Set the hyperparameter warmup_epochs in the config file to specific the epochs for training the unified supernet.
python3 search.py --cfg [CONFIG_FILE] --title [EXPERIMENT_TITLE]

Training Architecture Generator

  • For Imagenet training, set the config file ./config_file/imagenet_config.yml. For cifar100 training, set the config file ./config_file/config.yml.
  • Set the hyperparameter warmup_epochs in the config file to skip the supernet training, and set the hyperparameter search_epochs to specific the epochs for training the architecture generator.
python3 search.py --cfg [CONFIG_FILE] --title [EXPERIMENT_TITLE]

Train From Scratch

CIFAR10 or CIFAR100

  • Set train_portion in ./config_file/config.yml to 1
python3 train_cifar.py --cfg [CONFIG_FILE] -- flops [TARGET_FLOPS] --title [EXPERIMENT_TITLE]

ImageNet

  • Set the target flops and correspond config file path in run_example.sh
bash ./run_example.sh

Validate

ImageNet

  • SGNAS-A
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 365 --se True --activation hswish
  • SGNAS-B
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 320 --se True --activation hswish
  • SGNAS-C
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 275 --se True --activation hswish

Reference

Citation

@InProceedings{sgnas,
author = {Sian-Yao Huang and Wei-Ta Chu},
title = {Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition},
year = {2021}
}
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023