[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

Related tags

Deep LearningSGNAS
Overview

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator

Overview

This is the entire codebase for the paper Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator

In one-shot NAS, sub-networks need to be searched from the supernet to meet different hardware constraints. However, the search cost is high and N times of searches are needed for N different constraints. In this work, we propose a novel search strategy called architecture generator to search sub-networks by generating them, so that the search process can be much more efficient and flexible. With the trained architecture generator, given target hardware constraints as the input, N good architectures can be generated for N constraints by just one forward pass without researching and supernet retraining. Moreover, we propose a novel single-path supernet, called unified supernet, to further improve search efficiency and reduce GPU memory consumption of the architecture generator. With the architecture generator and the unified supernet, we pro- pose a flexible and efficient one-shot NAS framework, called Searching by Generating NAS (SGNAS). The search time of SGNAS for N different hardware constraints is only 5 GPU hours, which is 4N times faster than previous SOTA single-path methods. The top1-accuracy of SGNAS on ImageNet is 77.1%, which is comparable with the SOTAs.

sgnas_framework

Model Zoo

Model FLOPs (M) Param (M) Top-1 (%) Weights
SGNAS-A 373 6.0 77.1 Google drive
SGNAS-B 326 5.5 76.8 Google drive
SGNAS-C 281 4.7 76.2 Google drive

Requirements

pip3 install -r requirements.txt
  • [Optional] Transfer Imagenet dataset into LMDB format by utils/folder2lmdb.py
    • With LMDB format, you can speed up entire training process(30 mins per epoch with 4 GeForce GTX 1080 Ti)

Getting Started

Search

Training Unified Supernet

  • For Imagenet training, set the config file ./config_file/imagenet_config.yml. For cifar100 training, set the config file ./config_file/config.yml.
  • Set the hyperparameter warmup_epochs in the config file to specific the epochs for training the unified supernet.
python3 search.py --cfg [CONFIG_FILE] --title [EXPERIMENT_TITLE]

Training Architecture Generator

  • For Imagenet training, set the config file ./config_file/imagenet_config.yml. For cifar100 training, set the config file ./config_file/config.yml.
  • Set the hyperparameter warmup_epochs in the config file to skip the supernet training, and set the hyperparameter search_epochs to specific the epochs for training the architecture generator.
python3 search.py --cfg [CONFIG_FILE] --title [EXPERIMENT_TITLE]

Train From Scratch

CIFAR10 or CIFAR100

  • Set train_portion in ./config_file/config.yml to 1
python3 train_cifar.py --cfg [CONFIG_FILE] -- flops [TARGET_FLOPS] --title [EXPERIMENT_TITLE]

ImageNet

  • Set the target flops and correspond config file path in run_example.sh
bash ./run_example.sh

Validate

ImageNet

  • SGNAS-A
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 365 --se True --activation hswish
  • SGNAS-B
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 320 --se True --activation hswish
  • SGNAS-C
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 275 --se True --activation hswish

Reference

Citation

@InProceedings{sgnas,
author = {Sian-Yao Huang and Wei-Ta Chu},
title = {Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition},
year = {2021}
}
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Facebook Research 605 Jan 02, 2023
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023