Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Related tags

Deep LearningTGAN-SR
Overview

Generating Symbolic Reasoning Problems with Transformer GANs

This is the implementation of the paper Generating Symbolic Reasoning Problems with Transformer GANs.

Constructing training data for symbolic reasoning domains is challenging: On the one hand existing instances are typically hand-crafted and too few to be trained on directly, on the other hand synthetically generated instances are often hard to evaluate in terms of their meaningfulness.

We provide a GAN and a Wasserstein GAN equipped with Transformer encoders to generate sensible and challenging training data for symbolic reasoning domains. Even without autoregression, the GAN models produce syntactically correct problem instances. The generated data can be used as a substitute for real training data, and, especially, the training data can be generated from a real data set that is too small to be trained on directly.

For example, the models produced the following correct mathematical expressions:

and the following correct Linear-time Temporal Logic (LTL) formulas used in verification:

Installation

The code is shipped as a Python package that can be installed by executing

pip install -e .

in the impl directory (where setup.py is located). Python version 3.6 or higher is required. Additional dependencies such as tensorflow will be installed automatically. To generate datasets or solve instances immediately after generation, the LTL satisfiability checking tool aalta is required as binary. It can be obtained from bitbucket (earliest commit in that repository). After compiling, ensure that the binary aalta resides under the bin folder.

Datasets

A zip file containing our original datasets can be downloaded from here. Unpack its contents to the datasets directory.

Dataset generation

Alternatively, datasets can be generated from scratch. The following procedure describes how to construct a dataset similar to the main base dataset (LTLbase):

First, generate a raw dataset by

python -m tgan_sr.data_generation.generator -od datasets/LTLbase --splits all_raw:1 --timeout 2 -nv 10 -ne 1600000 -ts 50 --log-each-x-percent 1 --frac-unsat None

(possibly rename to not override the supplied dataset). Enter the newly created directory.

Optional: Visualize the dataset (like Figures 5 and 6 in the paper)

python -m tgan_sr.utils.analyze_dataset all_raw.txt formula,sat

To filter the dataset for duplicates and balance classes per size

python -m tgan_sr.utils.update_dataset all_raw.txt unique - | python -m tgan_sr.utils.update_dataset - balance_per_size all_balanced.txt

Optional: Calculate relaxed satisfiability

python -m tgan_sr.utils.update_dataset all_balanced.txt relaxed_sat all_balanced_rs.txt

Optional: Visualize the dataset (like Figures 7 and 8 in the paper)

python -m tgan_sr.utils.analyze_dataset all_balanced_rs.txt formula,sat+relaxed

Split the data into training and validation sets

python -m tgan_sr.utils.update_dataset all_balanced_rs.txt shuffle+split=train:8,val:1,test:1

Experiments (training)

The folder configs contains JSON files for each type of experiment in the paper. Settings for different hyperparameters can be easily adjusted.

A model can be trained like this:

python -m tgan_sr.train.gan --run-name NAME --params-file configs/CONFIG.json

During training, relevant metrics will be logged to train_custom in the run's directory and can be viewed with tensorboard afterwards.

A list of all configurations and corresponding JSON files:

  • Standard WGAN: wgan_gp10_nl6-4_nc2_bs1024.json
  • Standard GAN: gan_nl6-4_nc2_bs1024.json
  • different σ for added noise: add parameter "gan_sigma_real" and assign desired value
  • WGAN on 10K-sized base dataset: n10k_wgan_gp10_nl6-4_nc2_bs512.json
  • Sample data from the trained WGAN: sample_n10k_wgan_gp10_nl6-4_nc2_bs512.json (ensure the "load_from" field matches your trained run name)
  • Classifier on default dataset: class_nl4_bs1024.json
  • Classifier on generated dataset: class_Generated_nl4_bs1024.json
  • WGAN with included classifier: wgan+class_nl6-3s1_nc2_bs1024.json
  • WGAN with absolute uncertainty objective: wgan+class+uncert-abs_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • WGAN with entropy uncertainty objective: wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • Sample data from the trained WGAN with entropy uncertainty objective: sample_wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "load_from" field matches your trained run name)

Evaluation

To test a trained classifier on an arbitrary dataset (validation):

python -m tgan_sr.train.gan --run-name NAME --test --ds-name DATASET_NAME

The model will be automatically loaded from the latest checkpoint in the run's directory.

How to Cite

@article{TGAN-SR,
    title = {Generating Symbolic Reasoning Problems with Transformer GANs},
    author = {Kreber, Jens U and Hahn, Christopher},
    journal = {arXiv preprint},
    year = {2021}
}
Owner
Reactive Systems Group
Saarland University
Reactive Systems Group
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023