Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

Overview

COCON_ICLR2021

This is our Pytorch implementation of COCON.

CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021)
Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, Jie Fu
https://arxiv.org/abs/2010.02684

TL;DR: We propose CoCon to control the content of text generation from LMs by conditioning on content inputs at an interleave layer.

Requirements

  • Python 3.7.6 on Linux
  • PyTorch 1.4

Dependencies

Install dependencies with:

pip install -r requirements.txt

Dataset

  1. Download COCON's training data from https://github.com/openai/gpt-2-output-dataset
  2. Place the medium-345M-k40.${split}.jsonl files inside the data/gpt2output/ folder

COCON Training

Train COCON with a GPT-2 language model, with the parameters reported in the paper:

sh train_cocon.sh

After training, the COCON block's weights will be saved as models/COCON/cocon_block_pytorch_model.bin.

Training Key Arguments

--do_train : whether to train COCON or not
--output_dir : directory of COCON weights
--model_name_or_path : type of language model to train COCON with
--output_hidden_for_cocon_after_block_ind : index of transformer block whose hidden states are used as input to COCON for content conditioning, value is 6 for results reported in paper, meaning that the output of GPT-2's 7th transformer block is used as COCON block's input.

Pretrained COCON weights

You can download COCON's pretrained weights here and save it in models/COCON/ to start generating with COCON.

COCON Controlled Generation

Sample script on how to generate COCON sentiment-controlled text:

sh generation/generate_cocon_sentiments.sh

Sample script on how to generate COCON topic-controlled text:

sh generation/generate_cocon_topics.sh

COCON-generated texts correspond to the cocon_output key in the output .jsonl files and Cocon AR output in the output .txt files.

Generation Key Arguments

--do_cocon_compute : whether to do COCON generation
--output_dir : directory of COCON block's weights
--model_name_or_path : type of language model
--cocon_output_filename : path of saved generation samples
--cocon_compute_history_source_data_file : filename of text file containing prompt texts for generation
--cocon_compute_context_source_data_file : filename of text file containing target content for generation

Summary of Key Folders/Files

  • transformers/: code for models and optimizers
  • transformers/modeling_gpt2.py: code for COCON block and GPT-2 language model
  • BOW/: target content tokens used for COCON topic control
  • attr_markers/: target content tokens used for COCON sentiment control
  • prompts/: prompt text used for text generation

Citation

If you find our repository useful, please consider citing our paper:

@inproceedings{
chan2021cocon,
title={CoCon: A Self-Supervised Approach for Controlled Text Generation},
author={Alvin Chan and Yew-Soon Ong and Bill Pung and Aston Zhang and Jie Fu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=VD_ozqvBy4W}
}

Acknowledgements

Code is based largely on:

Owner
alvinchangw
CS PhD Student @ Nanyang Technological University, Singapore
alvinchangw
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022