Code for "On Memorization in Probabilistic Deep Generative Models"

Overview

On Memorization in Probabilistic Deep Generative Models

This repository contains the code necessary to reproduce the experiments in On Memorization in Probabilistic Deep Generative Models. You can also use this code to measure memorization in other types of probabilistic deep generative models. If you use our code in your own work please cite the paper using, for instance, the following BibTeX entry:

@article{van2021memorization,
  title={On Memorization in Probabilistic Deep Generative Models},
  author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
  journal={arXiv preprint arXiv:2106.03216},
  year={2021}
}

If you have any questions or encounter an issue when using this code, please send an email to gertjanvandenburg at gmail dot com.

Introduction

The files in the scripts directory are needed to reproduce the experiments and generate the figures in the paper. The experiments are organized using the Makefile provided. To reproduce the experiments or recreate the figures from the analysis, you'll have to install a number of dependencies. We use PyTorch to implement the deep learning algorithms. If you don't wish to re-run all the models, you can download the result files used in the paper (see below).

The scripts are all written in Python, and the necessary external dependencies can be found in the requirements.txt file. These can be installed using:

$ pip install -r requirements.txt

To recreate the figures the following system dependencies are also needed: pdflatex, latexmk, lualatex, and make. These programs are available for all major platforms.

Reproducing the results

To train the models on the different data sets, you can run:

$ make memorization

Note that depending on your machine this may take some time, so it might be easier to simply download the result files instead. It is also worth mentioning that while we have made an effort to ensure reproducibility by setting the random seed in PyTorch, platform or package version differences may result in slightly different output files (see also PyTorch Reproducibility).

All figures in the paper are generated from the raw result files using Python scripts. First, the summarize.py script takes the raw result files and creates summary files for each data set. Next, the analysis scripts are used to generate the figures, most of which are LaTeX files that require compilation using PDFLaTeX or LuaLaTeX. Simply run:

$ make analysis

to create the summaries and the output files. When using the result files linked below this will give the exact same figures as shown in the paper.

Result files

Due to their size, the raw result files are not contained in this repository, but can be downloaded separately from this link (about 2.6GB). After downloading the results.zip file, unpack it and move the results directory to where you've cloned this repository (so adjacent to the scripts directory). Below is a concise overview of the necessary commands:

$ git clone https://github.com/alan-turing-institute/memorization
$ cd memorization
$ wget https://gertjanvandenburg.com/projects/memorization/results.zip # or download the file in some other way
$ unzip results.zip
$ touch results/*/*/*          # update modification time of the result files
$ make analysis                # optionally, run ``make -n analysis`` first to see what will happen

After unpacking the zip file, you can optionally verify the integrity of the results using the SHA-256 checksums provided:

$ sha256sum --check results.sha256

License

The code in this repository is licensed under the MIT license. See the LICENSE file for further details. Reuse of the code in this repository is allowed, but should cite our paper.

Notes

If you find any problems or have a suggestion for improvement of this repository, please let me know as it will help make this resource better for everyone.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023