YOLOv2 in PyTorch

Overview

YOLOv2 in PyTorch

NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0).

This is a PyTorch implementation of YOLOv2. This project is mainly based on darkflow and darknet.

I used a Cython extension for postprocessing and multiprocessing.Pool for image preprocessing. Testing an image in VOC2007 costs about 13~20ms.

For details about YOLO and YOLOv2 please refer to their project page and the paper: YOLO9000: Better, Faster, Stronger by Joseph Redmon and Ali Farhadi.

NOTE 1: This is still an experimental project. VOC07 test mAP is about 0.71 (trained on VOC07+12 trainval, reported by @cory8249). See issue1 and issue23 for more details about training.

NOTE 2: I recommend to write your own dataloader using torch.utils.data.Dataset since multiprocessing.Pool.imap won't stop even there is no enough memory space. An example of dataloader for VOCDataset: issue71.

NOTE 3: Upgrade to PyTorch 0.4: https://github.com/longcw/yolo2-pytorch/issues/59

Installation and demo

  1. Clone this repository

    git clone [email protected]:longcw/yolo2-pytorch.git
  2. Build the reorg layer (tf.extract_image_patches)

    cd yolo2-pytorch
    ./make.sh
  3. Download the trained model yolo-voc.weights.h5 and set the model path in demo.py

  4. Run demo python demo.py.

Training YOLOv2

You can train YOLO2 on any dataset. Here we train it on VOC2007/2012.

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Since the program loading the data in yolo2-pytorch/data by default, you can set the data path as following.

    cd yolo2-pytorch
    mkdir data
    cd data
    ln -s $VOCdevkit VOCdevkit2007
  5. Download the pretrained darknet19 model and set the path in yolo2-pytorch/cfgs/exps/darknet19_exp1.py.

  6. (optional) Training with TensorBoard.

    To use the TensorBoard, set use_tensorboard = True in yolo2-pytorch/cfgs/config.py and install TensorboardX (https://github.com/lanpa/tensorboard-pytorch). Tensorboard log will be saved in training/runs.

  7. Run the training program: python train.py.

Evaluation

Set the path of the trained_model in yolo2-pytorch/cfgs/config.py.

cd faster_rcnn_pytorch
mkdir output
python test.py

Training on your own data

The forward pass requires that you supply 4 arguments to the network:

  • im_data - image data.
    • This should be in the format C x H x W, where C corresponds to the color channels of the image and H and W are the height and width respectively.
    • Color channels should be in RGB format.
    • Use the imcv2_recolor function provided in utils/im_transform.py to preprocess your image. Also, make sure that images have been resized to 416 x 416 pixels
  • gt_boxes - A list of numpy arrays, where each one is of size N x 4, where N is the number of features in the image. The four values in each row should correspond to x_bottom_left, y_bottom_left, x_top_right, and y_top_right.
  • gt_classes - A list of numpy arrays, where each array contains an integer value corresponding to the class of each bounding box provided in gt_boxes
  • dontcare - a list of lists

License: MIT license (MIT)

Owner
Long Chen
Computer Vision
Long Chen
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022