PyTorch implementation of popular datasets and models in remote sensing

Related tags

Deep Learningtorchrs
Overview

PyTorch Remote Sensing (torchrs)

(WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Resolution, Land Cover Classification/Segmentation, Image-to-Image Translation, etc.) for various Optical (Sentinel-2, Landsat, etc.) and Synthetic Aperture Radar (SAR) (Sentinel-1) sensors.

Installation

# pypi
pip install torch-rs

# latest
pip install git+https://github.com/isaaccorley/torchrs

Table of Contents

Datasets

PROBA-V Super Resolution

The PROBA-V Super Resolution Challenge dataset is a Multi-image Super Resolution (MISR) dataset of images taken by the ESA PROBA-Vegetation satellite. The dataset contains sets of unregistered 300m low resolution (LR) images which can be used to generate single 100m high resolution (HR) images for both Near Infrared (NIR) and Red bands. In addition, Quality Masks (QM) for each LR image and Status Masks (SM) for each HR image are available. The PROBA-V contains sensors which take imagery at 100m and 300m spatial resolutions with 5 and 1 day revisit rates, respectively. Generating high resolution imagery estimates would effectively increase the frequency at which HR imagery is available for vegetation monitoring.

The dataset can be downloaded (0.83GB) using scripts/download_probav.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import PROBAV

transform = Compose([ToTensor()])

dataset = PROBAV(
    root="path/to/dataset/",
    split="train",  # or 'test'
    band="RED",     # or 'NIR'
    lr_transform=transform,
    hr_transform=transform
)

x = dataset[0]
"""
x: dict(
    lr: low res images  (t, 1, 128, 128)
    qm: quality masks   (t, 1, 128, 128)
    hr: high res image  (1, 384, 384)
    sm: status mask     (1, 384, 384)
)
t varies by set of images (minimum of 9)
"""

ETCI 2021 Flood Detection

The ETCI 2021 Dataset is a Flood Detection segmentation dataset of SAR images taken by the ESA Sentinel-1 satellite. The dataset contains pairs of VV and VH polarization images processed by the Hybrid Pluggable Processing Pipeline (hyp3) along with corresponding binary flood and water body ground truth masks.

The dataset can be downloaded (5.6GB) using scripts/download_etci2021.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import ETCI2021

transform = Compose([ToTensor()])

dataset = ETCI2021(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    vv:         (3, 256, 256)
    vh:         (3, 256, 256)
    flood_mask: (1, 256, 256)
    water_mask: (1, 256, 256)
)
"""

Onera Satellite Change Detection (OSCD)

The Onera Satellite Change Detection (OSCD) dataset, proposed in "Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks", Daudt et al. is a Change Detection dataset of 13 band multispectral (MS) images taken by the ESA Sentinel-2 satellite. The dataset contains 24 registered image pairs from multiple continents between 2015-2018 along with binary change masks.

The dataset can be downloaded (0.73GB) using scripts/download_oscd.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import OSCD

transform = Compose([ToTensor(permute_dims=False)])

dataset = OSCD(
    root="path/to/dataset/",
    split="train",  # or 'test'
    transform=transform,
)

x = dataset[0]
"""
x: dict(
    x: (2, 13, h, w)
    mask: (1, h, w)
)
"""

Remote Sensing Visual Question Answering (RSVQA) Low Resolution (LR)

The RSVQA LR dataset, proposed in "RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al. is a visual question answering (VQA) dataset of RGB images taken by the ESA Sentinel-2 satellite. Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform scene understanding of medium resolution remote sensing imagery.

The dataset can be downloaded (0.2GB) using scripts/download_rsvqa_lr.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSVQALR

transform = T.Compose([T.ToTensor()])

dataset = RSVQALR(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:         (3, 256, 256)
    questions:  List[str]
    answers:    List[str]
    types:      List[str]
)
"""

Remote Sensing Image Captioning Dataset (RSICD)

The RSICD dataset, proposed in "Exploring Models and Data for Remote Sensing Image Caption Generation", Lu et al. is an image captioning dataset with 5 captions per image for 10,921 RGB images extracted using Google Earth, Baidu Map, MapABC and Tianditu. While one of the larger remote sensing image captioning datasets, this dataset contains very repetitive language with little detail and many captions are duplicated.

The dataset can be downloaded (0.57GB) using scripts/download_rsicd.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSICD

transform = T.Compose([T.ToTensor()])

dataset = RSICD(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:        (3, 224, 224)
    captions: List[str]
)
"""

Remote Sensing Image Scene Classification (RESISC45)

The RESISC45 dataset, proposed in "Remote Sensing Image Scene Classification: Benchmark and State of the Art", Cheng et al. is an image classification dataset of 31,500 RGB images extracted using Google Earth Engine. The dataset contains 45 scenes with 700 images per class from over 100 countries and was selected to optimize for high variability in image conditions (spatial resolution, occlusion, weather, illumination, etc.).

The dataset can be downloaded (0.47GB) using scripts/download_resisc45.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RESISC45

transform = T.Compose([T.ToTensor()])

dataset = RESISC45(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 256, 256)
y: int
"""

dataset.classes
"""
['airplane', 'airport', 'baseball_diamond', 'basketball_court', 'beach', 'bridge', 'chaparral',
'church', 'circular_farmland', 'cloud', 'commercial_area', 'dense_residential', 'desert', 'forest',
'freeway', 'golf_course', 'ground_track_field', 'harbor', 'industrial_area', 'intersection', 'island',
'lake', 'meadow', 'medium_residential', 'mobile_home_park', 'mountain', 'overpass', 'palace', 'parking_lot',
'railway', 'railway_station', 'rectangular_farmland', 'river', 'roundabout', 'runway', 'sea_ice', 'ship',
'snowberg', 'sparse_residential', 'stadium', 'storage_tank', 'tennis_court', 'terrace', 'thermal_power_station', 'wetland']
"""

EuroSAT

The EuroSAT dataset, proposed in "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification", Helber et al. is a land cover classification dataset of 27,000 images taken by the ESA Sentinel-2 satellite. The dataset contains 10 land cover classes with 2-3k images per class from over 34 European countries. The dataset is available in the form of RGB only or all Multispectral (MS) Sentinel-2 bands. This dataset is fairly easy with ~98.6% accuracy achieved with a ResNet-50.

The dataset can be downloaded (.13GB and 2.8GB) using scripts/download_eurosat_rgb.sh or scripts/download_eurosat_ms.sh and instantiated below:

import torchvision.transforms as T
from torchrs.transforms import ToTensor
from torchrs.datasets import EuroSATRGB, EuroSATMS

transform = T.Compose([T.ToTensor()])

dataset = EuroSATRGB(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 64, 64)
y: int
"""

transform = T.Compose([ToTensor()])

dataset = EuroSATMS(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (13, 64, 64)
y: int
"""

dataset.classes
"""
['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial',
'Pasture', 'PermanentCrop', 'Residential', 'River', 'SeaLake']
"""

Models

RAMS

Residual Attention Multi-image Super-resolution Network (RAMS) from "Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks", Salvetti et al. (2021)

RAMS is currently one of the top performers on the PROBA-V Super Resolution Challenge. This Multi-image Super Resolution (MISR) architecture utilizes attention based methods to extract spatial and spatiotemporal features from a set of low resolution images to form a single high resolution image. Note that the attention methods are effectively Squeeze-and-Excitation blocks from "Squeeze-and-Excitation Networks", Hu et al..

import torch
from torchrs.models import RAMS

# increase resolution by factor of 3 (e.g. 128x128 -> 384x384)
model = RAMS(
    scale_factor=3,
    t=9,
    c=1,
    num_feature_attn_blocks=12
)

# Input should be of shape (bs, t, c, h, w), where t is the number
# of low resolution input images and c is the number of channels/bands
lr = torch.randn(1, 9, 1, 128, 128)
sr = model(lr) # (1, 1, 384, 384)

Tests

$ pytest -ra
Comments
  • Error in training example

    Error in training example

    Following the example from the README:

    ValueError                                Traceback (most recent call last)
    <ipython-input-11-f854c515c2ab> in <module>()
    ----> 1 trainer.fit(model, datamodule=dm)
    
    23 frames
    /usr/local/lib/python3.7/dist-packages/torchmetrics/functional/classification/stat_scores.py in _stat_scores_update(preds, target, reduce, mdmc_reduce, num_classes, top_k, threshold, multiclass, ignore_index)
        123         if not mdmc_reduce:
        124             raise ValueError(
    --> 125                 "When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter"
        126             )
        127         if mdmc_reduce == "global":
    
    ValueError: When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter
    
    opened by robmarkcole 3
  • probaV key issue

    probaV key issue

    Listed as

        def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
            """ Returns a dict containing lrs, qms, hr, sm
            lrs: (t, 1, h, w) low resolution images
    

    but the key is actually lr. Similarly its not qms but qm

    opened by robmarkcole 3
  • Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    there is my code

    import torch
    import torch.nn as nn
    import pytorch_lightning as pl
    from torchrs.datasets import GID15
    from torchrs.train.modules import FCEFModule
    from torchrs.train.datamodules import GID15DataModule
    from torchrs.transforms import Compose, ToTensor
    
    
    def collate_fn(batch):
        x = torch.stack([x["x"] for x in batch])
        y = torch.cat([x["mask"] for x in batch])
        x = x.to(torch.float32)
        y = y.to(torch.long)
        return x, y
    
    transform = Compose([ToTensor()])
    
    dm = GID15DataModule(
        root="./datasets/gid-15",
        transform=transform,
        batch_size=128,
        num_workers=1,
        prefetch_factor=1,
        collate_fn=collate_fn,
        test_collate_fn=collate_fn,
    )
    
    
    model = FCEFModule(channels=3, t=2, num_classes=15, lr=1E-3)
    
    
    callbacks = [
        pl.callbacks.ModelCheckpoint(monitor="val_loss", mode="min", verbose=True, save_top_k=1),
        pl.callbacks.EarlyStopping(monitor="val_loss", mode="min", patience=10)
    ]
    
    trainer = pl.Trainer(
        gpus=1,
        precision=16,
        accumulate_grad_batches=1,
        max_epochs=25,
        callbacks=callbacks,
        weights_summary="top"
    )
    #
    trainer.fit(model, datamodule=dm)
    trainer.test(datamodule=dm)
    

    Error

    image

    opened by olongfen 2
  • Torchmetrics update

    Torchmetrics update

    • Updated segmentation metrics input args (namely added the mdmc_average="global" args) e.g.
    torchmetrics.Accuracy(threshold=0.5, num_classes=num_classes, average="micro", mdmc_average="global"),
    
    opened by isaaccorley 0
  • Change Detection models

    Change Detection models

    • Added EarlyFusion (EF) and Siamese (Siam) from the OSCD dataset paper
    • Added Fully convolutional EarlyFusion (FC-EF), Siamese Concatenation (FC-Siam-conc), and Siamese Difference (FC-Siam-diff)
    opened by isaaccorley 0
  • converted to datamodules and modules, updated readme, added install e…

    converted to datamodules and modules, updated readme, added install e…

    • Created LightningDataModule for each Dataset
    • Created LightningModule for each Model
    • Moved some config in setup.py to setup.cfg
    • Some minor fixes to a few datasets
    opened by isaaccorley 0
  • fair1m Only small part 1 dataset

    fair1m Only small part 1 dataset

    I noticed the official dataset is split into parts 1 & 2, with the bulk of the images being in part 2

    image

    The data downloaded using the script in this repo only downloads a subset of 1733 images, which I believe are the part 1 images?

    opened by robmarkcole 2
  • probav training memory error

    probav training memory error

    Using colab pro with nominally 25 Gb I am still running out of memory at 17 epochs using your probav example notebook. Is there any way to free memory on the fly? I was able to train the tensorflow RAMS implementation to 50 epochs on colab pro

    CUDA out of memory. Tried to allocate 46.00 MiB (GPU 0; 15.90 GiB total capacity; 14.01 GiB already allocated; 25.75 MiB free; 14.96 GiB reserved in total by PyTorch)
    
    opened by robmarkcole 5
Releases(0.0.4)
  • 0.0.4(Sep 3, 2021)

    • Added RSVQAHR, Sydney Captions, UC Merced Captions, S2MTCP, ADVANCE, SAT-4, SAT-6, HRSCD, Inria AIL, TiSeLaC, GID-15, ZeuriCrop, AID, Dubai Segmentation, HKH Glacier Mapping, UC Merced, PatternNet, WHU-RS19, RSSCN7, Brazilian Coffee Scenes datasets & datamodules
    • Added methods for creating train/val/test splits in datamodules
    • Added ExtractChips transform
    • Added dataset and datamodules local tests
    • Added h5py, imagecodecs, torchaudio reqs
    • Some minor fixes+additions to current datasets
    • Added FCEF, FCSiamConc, FCSiamDiff PL modules
    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Aug 2, 2021)

  • 0.0.2(Jul 26, 2021)

Owner
isaac
Senior Computer Vision Engineer @ BlackSky, Ph.D. Student at the University of Texas at San Antonio. Former @housecanary, @boozallen, @swri, @ornl
isaac
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022