PyTorch implementation of popular datasets and models in remote sensing

Related tags

Deep Learningtorchrs
Overview

PyTorch Remote Sensing (torchrs)

(WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Resolution, Land Cover Classification/Segmentation, Image-to-Image Translation, etc.) for various Optical (Sentinel-2, Landsat, etc.) and Synthetic Aperture Radar (SAR) (Sentinel-1) sensors.

Installation

# pypi
pip install torch-rs

# latest
pip install git+https://github.com/isaaccorley/torchrs

Table of Contents

Datasets

PROBA-V Super Resolution

The PROBA-V Super Resolution Challenge dataset is a Multi-image Super Resolution (MISR) dataset of images taken by the ESA PROBA-Vegetation satellite. The dataset contains sets of unregistered 300m low resolution (LR) images which can be used to generate single 100m high resolution (HR) images for both Near Infrared (NIR) and Red bands. In addition, Quality Masks (QM) for each LR image and Status Masks (SM) for each HR image are available. The PROBA-V contains sensors which take imagery at 100m and 300m spatial resolutions with 5 and 1 day revisit rates, respectively. Generating high resolution imagery estimates would effectively increase the frequency at which HR imagery is available for vegetation monitoring.

The dataset can be downloaded (0.83GB) using scripts/download_probav.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import PROBAV

transform = Compose([ToTensor()])

dataset = PROBAV(
    root="path/to/dataset/",
    split="train",  # or 'test'
    band="RED",     # or 'NIR'
    lr_transform=transform,
    hr_transform=transform
)

x = dataset[0]
"""
x: dict(
    lr: low res images  (t, 1, 128, 128)
    qm: quality masks   (t, 1, 128, 128)
    hr: high res image  (1, 384, 384)
    sm: status mask     (1, 384, 384)
)
t varies by set of images (minimum of 9)
"""

ETCI 2021 Flood Detection

The ETCI 2021 Dataset is a Flood Detection segmentation dataset of SAR images taken by the ESA Sentinel-1 satellite. The dataset contains pairs of VV and VH polarization images processed by the Hybrid Pluggable Processing Pipeline (hyp3) along with corresponding binary flood and water body ground truth masks.

The dataset can be downloaded (5.6GB) using scripts/download_etci2021.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import ETCI2021

transform = Compose([ToTensor()])

dataset = ETCI2021(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    vv:         (3, 256, 256)
    vh:         (3, 256, 256)
    flood_mask: (1, 256, 256)
    water_mask: (1, 256, 256)
)
"""

Onera Satellite Change Detection (OSCD)

The Onera Satellite Change Detection (OSCD) dataset, proposed in "Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks", Daudt et al. is a Change Detection dataset of 13 band multispectral (MS) images taken by the ESA Sentinel-2 satellite. The dataset contains 24 registered image pairs from multiple continents between 2015-2018 along with binary change masks.

The dataset can be downloaded (0.73GB) using scripts/download_oscd.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import OSCD

transform = Compose([ToTensor(permute_dims=False)])

dataset = OSCD(
    root="path/to/dataset/",
    split="train",  # or 'test'
    transform=transform,
)

x = dataset[0]
"""
x: dict(
    x: (2, 13, h, w)
    mask: (1, h, w)
)
"""

Remote Sensing Visual Question Answering (RSVQA) Low Resolution (LR)

The RSVQA LR dataset, proposed in "RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al. is a visual question answering (VQA) dataset of RGB images taken by the ESA Sentinel-2 satellite. Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform scene understanding of medium resolution remote sensing imagery.

The dataset can be downloaded (0.2GB) using scripts/download_rsvqa_lr.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSVQALR

transform = T.Compose([T.ToTensor()])

dataset = RSVQALR(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:         (3, 256, 256)
    questions:  List[str]
    answers:    List[str]
    types:      List[str]
)
"""

Remote Sensing Image Captioning Dataset (RSICD)

The RSICD dataset, proposed in "Exploring Models and Data for Remote Sensing Image Caption Generation", Lu et al. is an image captioning dataset with 5 captions per image for 10,921 RGB images extracted using Google Earth, Baidu Map, MapABC and Tianditu. While one of the larger remote sensing image captioning datasets, this dataset contains very repetitive language with little detail and many captions are duplicated.

The dataset can be downloaded (0.57GB) using scripts/download_rsicd.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSICD

transform = T.Compose([T.ToTensor()])

dataset = RSICD(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:        (3, 224, 224)
    captions: List[str]
)
"""

Remote Sensing Image Scene Classification (RESISC45)

The RESISC45 dataset, proposed in "Remote Sensing Image Scene Classification: Benchmark and State of the Art", Cheng et al. is an image classification dataset of 31,500 RGB images extracted using Google Earth Engine. The dataset contains 45 scenes with 700 images per class from over 100 countries and was selected to optimize for high variability in image conditions (spatial resolution, occlusion, weather, illumination, etc.).

The dataset can be downloaded (0.47GB) using scripts/download_resisc45.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RESISC45

transform = T.Compose([T.ToTensor()])

dataset = RESISC45(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 256, 256)
y: int
"""

dataset.classes
"""
['airplane', 'airport', 'baseball_diamond', 'basketball_court', 'beach', 'bridge', 'chaparral',
'church', 'circular_farmland', 'cloud', 'commercial_area', 'dense_residential', 'desert', 'forest',
'freeway', 'golf_course', 'ground_track_field', 'harbor', 'industrial_area', 'intersection', 'island',
'lake', 'meadow', 'medium_residential', 'mobile_home_park', 'mountain', 'overpass', 'palace', 'parking_lot',
'railway', 'railway_station', 'rectangular_farmland', 'river', 'roundabout', 'runway', 'sea_ice', 'ship',
'snowberg', 'sparse_residential', 'stadium', 'storage_tank', 'tennis_court', 'terrace', 'thermal_power_station', 'wetland']
"""

EuroSAT

The EuroSAT dataset, proposed in "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification", Helber et al. is a land cover classification dataset of 27,000 images taken by the ESA Sentinel-2 satellite. The dataset contains 10 land cover classes with 2-3k images per class from over 34 European countries. The dataset is available in the form of RGB only or all Multispectral (MS) Sentinel-2 bands. This dataset is fairly easy with ~98.6% accuracy achieved with a ResNet-50.

The dataset can be downloaded (.13GB and 2.8GB) using scripts/download_eurosat_rgb.sh or scripts/download_eurosat_ms.sh and instantiated below:

import torchvision.transforms as T
from torchrs.transforms import ToTensor
from torchrs.datasets import EuroSATRGB, EuroSATMS

transform = T.Compose([T.ToTensor()])

dataset = EuroSATRGB(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 64, 64)
y: int
"""

transform = T.Compose([ToTensor()])

dataset = EuroSATMS(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (13, 64, 64)
y: int
"""

dataset.classes
"""
['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial',
'Pasture', 'PermanentCrop', 'Residential', 'River', 'SeaLake']
"""

Models

RAMS

Residual Attention Multi-image Super-resolution Network (RAMS) from "Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks", Salvetti et al. (2021)

RAMS is currently one of the top performers on the PROBA-V Super Resolution Challenge. This Multi-image Super Resolution (MISR) architecture utilizes attention based methods to extract spatial and spatiotemporal features from a set of low resolution images to form a single high resolution image. Note that the attention methods are effectively Squeeze-and-Excitation blocks from "Squeeze-and-Excitation Networks", Hu et al..

import torch
from torchrs.models import RAMS

# increase resolution by factor of 3 (e.g. 128x128 -> 384x384)
model = RAMS(
    scale_factor=3,
    t=9,
    c=1,
    num_feature_attn_blocks=12
)

# Input should be of shape (bs, t, c, h, w), where t is the number
# of low resolution input images and c is the number of channels/bands
lr = torch.randn(1, 9, 1, 128, 128)
sr = model(lr) # (1, 1, 384, 384)

Tests

$ pytest -ra
Comments
  • Error in training example

    Error in training example

    Following the example from the README:

    ValueError                                Traceback (most recent call last)
    <ipython-input-11-f854c515c2ab> in <module>()
    ----> 1 trainer.fit(model, datamodule=dm)
    
    23 frames
    /usr/local/lib/python3.7/dist-packages/torchmetrics/functional/classification/stat_scores.py in _stat_scores_update(preds, target, reduce, mdmc_reduce, num_classes, top_k, threshold, multiclass, ignore_index)
        123         if not mdmc_reduce:
        124             raise ValueError(
    --> 125                 "When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter"
        126             )
        127         if mdmc_reduce == "global":
    
    ValueError: When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter
    
    opened by robmarkcole 3
  • probaV key issue

    probaV key issue

    Listed as

        def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
            """ Returns a dict containing lrs, qms, hr, sm
            lrs: (t, 1, h, w) low resolution images
    

    but the key is actually lr. Similarly its not qms but qm

    opened by robmarkcole 3
  • Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    there is my code

    import torch
    import torch.nn as nn
    import pytorch_lightning as pl
    from torchrs.datasets import GID15
    from torchrs.train.modules import FCEFModule
    from torchrs.train.datamodules import GID15DataModule
    from torchrs.transforms import Compose, ToTensor
    
    
    def collate_fn(batch):
        x = torch.stack([x["x"] for x in batch])
        y = torch.cat([x["mask"] for x in batch])
        x = x.to(torch.float32)
        y = y.to(torch.long)
        return x, y
    
    transform = Compose([ToTensor()])
    
    dm = GID15DataModule(
        root="./datasets/gid-15",
        transform=transform,
        batch_size=128,
        num_workers=1,
        prefetch_factor=1,
        collate_fn=collate_fn,
        test_collate_fn=collate_fn,
    )
    
    
    model = FCEFModule(channels=3, t=2, num_classes=15, lr=1E-3)
    
    
    callbacks = [
        pl.callbacks.ModelCheckpoint(monitor="val_loss", mode="min", verbose=True, save_top_k=1),
        pl.callbacks.EarlyStopping(monitor="val_loss", mode="min", patience=10)
    ]
    
    trainer = pl.Trainer(
        gpus=1,
        precision=16,
        accumulate_grad_batches=1,
        max_epochs=25,
        callbacks=callbacks,
        weights_summary="top"
    )
    #
    trainer.fit(model, datamodule=dm)
    trainer.test(datamodule=dm)
    

    Error

    image

    opened by olongfen 2
  • Torchmetrics update

    Torchmetrics update

    • Updated segmentation metrics input args (namely added the mdmc_average="global" args) e.g.
    torchmetrics.Accuracy(threshold=0.5, num_classes=num_classes, average="micro", mdmc_average="global"),
    
    opened by isaaccorley 0
  • Change Detection models

    Change Detection models

    • Added EarlyFusion (EF) and Siamese (Siam) from the OSCD dataset paper
    • Added Fully convolutional EarlyFusion (FC-EF), Siamese Concatenation (FC-Siam-conc), and Siamese Difference (FC-Siam-diff)
    opened by isaaccorley 0
  • converted to datamodules and modules, updated readme, added install e…

    converted to datamodules and modules, updated readme, added install e…

    • Created LightningDataModule for each Dataset
    • Created LightningModule for each Model
    • Moved some config in setup.py to setup.cfg
    • Some minor fixes to a few datasets
    opened by isaaccorley 0
  • fair1m Only small part 1 dataset

    fair1m Only small part 1 dataset

    I noticed the official dataset is split into parts 1 & 2, with the bulk of the images being in part 2

    image

    The data downloaded using the script in this repo only downloads a subset of 1733 images, which I believe are the part 1 images?

    opened by robmarkcole 2
  • probav training memory error

    probav training memory error

    Using colab pro with nominally 25 Gb I am still running out of memory at 17 epochs using your probav example notebook. Is there any way to free memory on the fly? I was able to train the tensorflow RAMS implementation to 50 epochs on colab pro

    CUDA out of memory. Tried to allocate 46.00 MiB (GPU 0; 15.90 GiB total capacity; 14.01 GiB already allocated; 25.75 MiB free; 14.96 GiB reserved in total by PyTorch)
    
    opened by robmarkcole 5
Releases(0.0.4)
  • 0.0.4(Sep 3, 2021)

    • Added RSVQAHR, Sydney Captions, UC Merced Captions, S2MTCP, ADVANCE, SAT-4, SAT-6, HRSCD, Inria AIL, TiSeLaC, GID-15, ZeuriCrop, AID, Dubai Segmentation, HKH Glacier Mapping, UC Merced, PatternNet, WHU-RS19, RSSCN7, Brazilian Coffee Scenes datasets & datamodules
    • Added methods for creating train/val/test splits in datamodules
    • Added ExtractChips transform
    • Added dataset and datamodules local tests
    • Added h5py, imagecodecs, torchaudio reqs
    • Some minor fixes+additions to current datasets
    • Added FCEF, FCSiamConc, FCSiamDiff PL modules
    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Aug 2, 2021)

  • 0.0.2(Jul 26, 2021)

Owner
isaac
Senior Computer Vision Engineer @ BlackSky, Ph.D. Student at the University of Texas at San Antonio. Former @housecanary, @boozallen, @swri, @ornl
isaac
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022