Implementation of Sequence Generative Adversarial Nets with Policy Gradient

Related tags

Deep LearningSeqGAN
Overview

SeqGAN

Requirements:

  • Tensorflow r1.0.1
  • Python 2.7
  • CUDA 7.5+ (For GPU)

Introduction

Apply Generative Adversarial Nets to generating sequences of discrete tokens.

The illustration of SeqGAN. Left: D is trained over the real data and the generated data by G. Right: G is trained by policy gradient where the final reward signal is provided by D and is passed back to the intermediate action value via Monte Carlo search.

The research paper SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient has been accepted at the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).

We provide example codes to repeat the synthetic data experiments with oracle evaluation mechanisms. To run the experiment with default parameters:

$ python sequence_gan.py

You can change the all the parameters in sequence_gan.py.

The experiment has two stages. In the first stage, use the positive data provided by the oracle model and Maximum Likelihood Estimation to perform supervise learning. In the second stage, use adversarial training to improve the generator.

After running the experiments, you could get the negative log-likelihodd performance saved in save/experiment-log.txt like:

pre-training...
epoch:	0	nll:	10.1716
epoch:	5	nll:	9.42939
epoch:	10	nll:	9.2388
epoch:	15	nll:	9.11899
epoch:	20	nll:	9.13099
epoch:	25	nll:	9.14474
epoch:	30	nll:	9.12539
epoch:	35	nll:	9.13982
epoch:	40	nll:	9.135
epoch:	45	nll:	9.13081
epoch:	50	nll:	9.10678
epoch:	55	nll:	9.10694
epoch:	60	nll:	9.10349
epoch:	65	nll:	9.10403
epoch:	70	nll:	9.07613
epoch:	75	nll:	9.091
epoch:	80	nll:	9.08909
epoch:	85	nll:	9.0807
epoch:	90	nll:	9.08434
epoch:	95	nll:	9.08936
epoch:	100	nll:	9.07443
epoch:	105	nll:	9.08305
epoch:	110	nll:	9.06973
epoch:	115	nll:	9.07058
adversarial training...
epoch:	0	nll:	9.08457
epoch:	5	nll:	9.04511
epoch:	10	nll:	9.03079
epoch:	15	nll:	8.99239
epoch:	20	nll:	8.96401
epoch:	25	nll:	8.93864
epoch:	30	nll:	8.91642
epoch:	35	nll:	8.87761
epoch:	40	nll:	8.88582
epoch:	45	nll:	8.8592
epoch:	50	nll:	8.83388
epoch:	55	nll:	8.81342
epoch:	60	nll:	8.80247
epoch:	65	nll:	8.77778
epoch:	70	nll:	8.7567
epoch:	75	nll:	8.73002
epoch:	80	nll:	8.72488
epoch:	85	nll:	8.72233
epoch:	90	nll:	8.71473
epoch:	95	nll:	8.71163
epoch:	100	nll:	8.70113
epoch:	105	nll:	8.69879
epoch:	110	nll:	8.69208
epoch:	115	nll:	8.69291
epoch:	120	nll:	8.68371
epoch:	125	nll:	8.689
epoch:	130	nll:	8.68989
epoch:	135	nll:	8.68269
epoch:	140	nll:	8.68647
epoch:	145	nll:	8.68066
epoch:	150	nll:	8.6832

Note: this code is based on the previous work by ofirnachum. Many thanks to ofirnachum.

Owner
Lantao Yu
Ph.D. Student at Stanford CS Department
Lantao Yu
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023