Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

Overview

README

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques. A dataset containing signals collected from 60 LoRa devices is also provided. The detailed collection settings for the different sub-datasets can be found in Section Dataset Introduction. The section of Code Example introduces the usage of some important functions, for more detailed usage please read the code comments carefully.

Citation

If the part of the dataset/codes contributes to your project, please cite:

[1] G. Shen, J. Zhang, A. Marshall, and J. Cavallaro.   “Towards Scalable and Channel-Robust Radio Frequency 
Fingerprint Identification for LoRa,” IEEE Trans. Inf. Forensics Security, 2022.
@article{shen2021towards,
  title={Towards Scalable and Channel-Robust Radio Frequency Fingerprint Identification for LoRa},
  author={Shen, Guanxiong and Zhang, Junqing and Marshall, Alan and Cavallaro, Joseph},
  journal={arXiv preprint arXiv:2107.02867},
  year={2021}
}

Dataset Introduction

Experimental Devices

There are 60 commercial-off-the-shelf LoRa devices (LoPy4, mbed SX1261 shields, FiPy, Dragino SX1276 shields) included in the experiments. The table below provides more details of them.

Device index Model Chipset
1 - 45 Pycom LoPy4 SX1276
46 - 50 mbed SX1261 shield SX1261
51 - 55 Pycom FiPy SX1272
56 - 60 Dragino SX1276 shield SX1276

All the LoRa packets are captured by a USRP N210 software-defined radio (SDR).

Dataset Structure

The dataset consists of 26 sub-datasets, each of which is an HDF5 file. Each HDF5 file contains a number of LoRa signals (IQ samples of preamble part) and corresponding device labels. As HDF5 does not support complex numbers, we concatenate the signal I-brach (real part) and Q-branch (imaginary part) and then save it. Figure below shows the structure of the raw HDF5 dataset.

Training Datasets

The following table summarizes the basic information of each training dataset. All the training datasets were collected in a residential room with a line of sight (LOS) between the transmitter and receiver.

Training dataset path Devices Number of packets per device Augmentation
Dataset/Train/dataset_training_aug.h5 1 - 30 1,000 Yes, both multipath & Doppler
Dataset/Train/dataset_training_aug_0hz.h5 1 - 30 1,000 Yes, only multipath ($f_d$ = 0 Hz)
Dataset/Train/dataset_training_no_aug.h5 1 - 30 500 No

Test/Enrollment Datasets

The test/enrollment datasets were collected in a residential room, an office building and a meeting room. The floor plan is provided in the following figure:

The following table summarizes the basic information of each test/enrollment dataset.

Test dataset path Devices Number of packets per device Collection env.
Dataset/Test/dataset_seen_devices.h5 1 - 30 400 Residential room, LOS, stationary
Dataset/Test/dataset_rogue.h5 41 - 45 200 Residential room, LOS, stationary
Dataset/Test/dataset_residential.h5 31 - 40 400 Residential room, LOS, stationary
Dataset/Test/dataset_other_device_type.h5 46 - 60 400 Residential room, LOS, stationary
Dataset/Test/channel_problem/A.h5 31 - 40 200 Location A, LOS, stationary
Dataset/Test/channel_problem/B.h5 31 - 40 200 Location B, LOS, stationary
Dataset/Test/channel_problem/C.h5 31 - 40 200 Location C, LOS, stationary
Dataset/Test/channel_problem/D.h5 31 - 40 200 Location D, NLOS, stationary
Dataset/Test/channel_problem/E.h5 31 - 40 200 Location E, NLOS, stationary
Dataset/Test/channel_problem/F.h5 31 - 40 200 Location F, NLOS, stationary
Dataset/Test/channel_problem/B_walk.h5 31 - 40 200 Location B, LOS, object moving
Dataset/Test/channel_problem/F_walk.h5 31 - 40 200 Location F, NLOS, object moving
Dataset/Test/channel_problem/moving_office.h5 31 - 40 200 LOS, mobile in the office
Dataset/Test/channel_problem/moving_meeting_room.h5 31 - 40 200 NLOS, mobile in the meeting room
Dataset/Test/channel_problem/B_antenna.h5 31 - 40 200 Location B, LOS, stationary, parallel antenna
Dataset/Test/channel_problem/F_antenna.h5 31 - 40 200 Location F, NLOS, stationary, parallel antenna

Code Example

1. Before Start

a) Install Required Packages

Please find the 'requirement.txt' file to install the required packages.

b) Download Dataset

Please downlaod the dataset and put it in the project folder. The download link is https://ieee-dataport.org/open-access/lorarffidataset.

c) Operating System

This project is built entirely on the Windows operating system. There may be unexpected issues on other operating systems.

2. Quick Start

After installing packages of correct versions and downloading the datasets, you can directly run the 'main.py' file for RFF extractor training/rogue device detection/classification tasks. You can change the variable 'run_for' in line 364 to specify which task to perform. For example, the program will train an RFF extractor and save it if you set the 'run_for' as 'Train'.

3. Load Datasets

It is recommended to use our provided 'LoadDataset' class function to load the raw HDF5 files. You need to specify the dataset path, device range, and packet range before running it. Below is an example of loading an HDF5 file:

import numpy as np
from dataset_preparation import LoadDataset

LoadDatasetObj = LoadDataset()
data, label = LoadDatasetObj.load_iq_samples(file_path = './dataset/Train/dataset_training_aug.h5', 
                                             dev_range = np.arange(30,40, dtype = int), 
                                             pkt_range= np.arange(0,100, dtype = int))

This example will extract ($10\times100=1000$) LoRa signals in total. More specifically, it will extract 100 packets from each device in range. The function 'load_iq_samples' returns two arrays, data and label. The data is a complex128 array of size (1000,8192), and label is an int32 array of size (1000,1). The figure below illustrates the structures of the two arrays.

Note that the loaded labels start from 0 but not 1 to adapt to deep learning. In other words, device 1 is labelled 0 and device 2 is labelled 1 and so forth.

4. Generate Channel Independent Spectrograms

The channel independent spectrogram helps mitigate the channel effects in the received signal and make LoRa-RFFI systems more robust to channel variations. We provide functions to convert an array of IQ samples to channel independent spectrograms. The following code block gives an example:

from dataset_preparation import ChannelIndSpectrogram

ChannelIndSpectrogramObj = ChannelIndSpectrogram()
# The input 'data' is the loaded IQ samples in the last example.
ch_ind_spec = ChannelIndSpectrogramObj.channel_ind_spectrogram(data)

The returned 'ch_ind_spec' is an array of size (1000,102,62,1). Note that the size of the array is affected by the STFT parameters, which can be changed in code. Please refer to our paper or code comments to find the detailed derivation of channel independent spectrograms.

5. Train an RFF Extractor

The function 'train_feature_extractor()' can train an RFF extractor using triplet loss.

import numpy as np
from deep_learning_models import TripletNet, identity_loss
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.optimizers import RMSprop

feature_extractor = train_feature_extractor()

You can also specify the training dataset path, training device range, training packets range and SNR range during augmentation. Otherwise, the default values will be used. Following is an example:

feature_extractor = train_feature_extractor(file_path = './dataset/Train/dataset_training_aug.h5', 
                                            dev_range = np.arange(0,10, dtype = int), 
                                            pkt_range = np.arange(0,1000, dtype = int), 
                                            snr_range = np.arange(20,80)):

6. Rogue Device Detection

The function 'test_rogue_device_detection()' performs the rogue device detection task. You MUST specify the RFF extractor path before running the function. See the example below:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc

fpr, tpr, roc_auc, eer = test_rogue_device_detection('./models/Extractor_1.h5')

This function returns false posive rate (FPR), true positive rate (TPR), area under the curve (AUC) and equal error rate (EER). These are all important evaluation metrics in rogue device detection task. Please refer to our paper for their definitions.

The following lines of code plot the ROC curve using the returned results:

import matplotlib.pyplot as plt

# Plot the ROC curves.
plt.figure(figsize=(4.8, 2.8))
plt.xlim(-0.01, 1.02)
plt.ylim(-0.01, 1.02)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Extractor 1, AUC = ' 
         + str(round(roc_auc,3)) + ', EER = ' + str(round(eer,3)), C='r')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc=4)
# plt.savefig('roc_curve.pdf',bbox_inches='tight')
plt.show()    

7. Classification

The function 'test_classification()' performs the classification task. You MUST specify the paths of enrollment dataset, test dataset and RFF extractor before running the function. Here is a simple example:

from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

pred_label, true_label, acc = test_classification(file_path_enrol = 
                                                  './dataset/Test/dataset_residential.h5',
                                                  file_path_clf = 
                                                  './dataset/Test/channel_problem/A.h5',
                                                  feature_extractor_name = 
                                                  './models/Extractor_1.h5')

This example returns predicted labels, true labels and the overall classification accuracy. We can further plot a confusion matrix to see fine-grained classification results:

import matplotlib.pyplot as plt
import seaborn as sns

# Plot the confusion matrix.
conf_mat = confusion_matrix(true_label, pred_label)
classes = test_dev_range + 1 # xticklabels

plt.figure()
sns.heatmap(conf_mat, annot=True, 
            fmt = 'd', cmap='Blues',
            cbar = False,
            xticklabels=classes, 
            yticklabels=classes)
plt.xlabel('Predicted label', fontsize = 20)
plt.ylabel('True label', fontsize = 20)

License

The dataset and code is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Contact

Please contact the following email addresses if you have any questions:
[email protected]
[email protected]

Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022