HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

Related tags

Deep LearningHODEmu
Overview

HODEmu

HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of cosmological parameters Omega_m, Omega_b, sigma_8, h_0 and redshift.

The Emulator is trained on satellite abundance of Magneticum simulations Box1a/mr spanning 15 cosmologies (see Table 1 of the paper) and on all satellites with a stellar mass cut of M* > 2 1011 M. Use Eq. 3 to rescale it to a stelalr mass cut of 1010M.

The Emulator has been trained with sklearn GPR, however the class implemented in hod_emu.py is a stand-alone porting and does not need sklearn to be installed.

satellite average abundance for two Magneticum Box1a/mr simulations, from Ragagnin et al. 2021

TOC:

Install

You can either )1) download the file hod_emu.py and _hod_emu_sklearn_gpr_serialized.py or (2) install it with python -mpip install git+https://github.com/aragagnin/HODEmu. The package depends only on scipy. The file hod_emu.py can be executed from your command line interface by running ./hod_emu.py in the installation folder.

Check this ipython-notebook for a guided usage on a python code: https://github.com/aragagnin/HODEmu/blob/main/examples.ipynb

Example 1: Obtain normalisation, logslope and gaussian scatter of Ns-M relation

The following command will output, respectively, normalisation A, log-slope \beta, log-scatter \sigma, and the respective standard deviation from the emulator. Since the emulator has been trained on the residual of the power-law dependency in Eq. 6, the errors are respectively, the standard deviation on log-A, on log-beta, and on log-sigma. Note that --delta can be only 200c or vir as the paper only emulates these two overdensities.

 ./hod_emu.py  200c  .27  .04   0.8  0.7   0.0 #overdensity omega_m omega_b sigma8 h0 redshift

Here below we will use hod_emyu as python library to plot the Ns-M relation. First we use hod_emu.get_emulator_m200c() to obtain an instance of the Emulator class trianed on Delta_200c, and the function emu.predict_A_beta_sigma(input) to retrieve A,\beta and \sigma.

Note that input can be evaluated on a number N of data points (in this example only one), thus being is a N x 5 numpy array and the return value is a N x 3 numpy array. The parameter emulator_std=True will also return a N x 3 numpy array with the corresponding emulator standard deviations.

import hod_emu
Om0, Ob0, s8, h0, z = 0.3, 0.04, 0.8, 0.7, 0.9

input = [[Om0, Ob0, s8, h0, 1./(1.+z)]] #the input must be a 2d array because you can feed an array of data points

emu = hod_emu.get_emulator_m200c() # use get_emulator_mvir to obtain the emulator within Delta_vir

A, beta, sigma  =  emu.predict_A_beta_sigma(input).T #the function outputs a 1x3 matrix 

masses = np.logspace(14.5,15.5,20)
Ns = A*(masses/5e14)**beta 

plt.plot(masses,Ns)
plt.fill_between(masses, Ns*(1.-sigma), Ns*(1.+sigma),alpha=0.2)
plt.xlabel(r'$M_{\rm{halo}}$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
   )
plt.xscale('log')
plt.yscale('log')

params_tuple, stds_tuple  =  emu.predict_A_beta_sigma(input, emulator_std=True) #here we also asks for Emulator std deviation

A, beta, sigma = params_tuple.T
error_logA, error_logbeta, error_logsigma = stds_tuple.T

print('A: %.3e, log-std A: %.3e'%(A[0], error_logA[0]))
print('B: %.3e, log-std beta: %.3e'%(beta[0], error_logbeta[0]))
print('sigma: %.3e, log-std sigma: %.3e'%(sigma[0], error_logsigma[0]))

Will show the following figure:

Ns-M relation produced by HODEmu

And print the following output:

A: 1.933e+00, log-std A: 1.242e-01
B: 1.002e+00, log-std beta: 8.275e-02
sigma: 6.723e-02, log-std sigma: 2.128e-01

Example 2: Produce mock catalog of galaxies

In this example we use package hmf to produce a mock catalog of haloe masses. Note that the mock number of satellite is based on a gaussian distribution with a cut on negative value (see Eq. 5 of the paper), hence the function non_neg_normal_sample.

2\cdot10^{11}M_\odot \ \ \ \tt{ and } \ \ \ \ \ r
import hmf.helpers.sample
import scipy.stats

masses = hmf.helpers.sample.sample_mf(400,14.0,hmf_model="PS",Mmax=17,sort=True)[0]    
    
def non_neg_normal_sample(loc, scale,  max_iters=1000):
    "Given a numpy-array of loc and scale, return data from only-positive normal distribution."
    vals = scipy.stats.norm.rvs(loc = loc, scale=scale)
    mask_negative = vals<0.
    if(np.any(vals[mask_negative])):
        non_neg_normal_sample(loc[mask_negative], scale[mask_negative],  max_iters=1000)
    # after the recursion, we should have all positive numbers
    
    if(np.any(vals<0.)):
        raise Exception("non_neg_normal_sample function failed to provide  positive-normal")    
    return vals

A, beta, logscatter = emu.predict_A_beta_sigma( [Om0, Ob0, s8, h0, 1./(1.+z)])[0].T

Ns = A*(masses/5e14)**beta

modelmu = non_neg_normal_sample(loc = Ns, scale=logscatter*Ns)
modelpois = scipy.stats.poisson.rvs(modelmu)
modelmock = modelpois

plt.fill_between(masses, Ns *(1.-logscatter), Ns *(1.+logscatter), label='Ns +/- log scatter from Emu', color='black',alpha=0.5)
plt.scatter(masses, modelmock , label='Ns mock', color='orange')
plt.plot(masses, Ns , label='
    
      from Emu'
    , color='black')
plt.ylim([0.1,100.])
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$M_{\rm {halo}} [M_\odot]$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
    )

plt.legend();

Will show the following figure:

Mock catalog of halos and satellite abundance produced by HODEmu

Owner
Antonio Ragagnin
I cook math
Antonio Ragagnin
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022