HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

Related tags

Deep LearningHODEmu
Overview

HODEmu

HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of cosmological parameters Omega_m, Omega_b, sigma_8, h_0 and redshift.

The Emulator is trained on satellite abundance of Magneticum simulations Box1a/mr spanning 15 cosmologies (see Table 1 of the paper) and on all satellites with a stellar mass cut of M* > 2 1011 M. Use Eq. 3 to rescale it to a stelalr mass cut of 1010M.

The Emulator has been trained with sklearn GPR, however the class implemented in hod_emu.py is a stand-alone porting and does not need sklearn to be installed.

satellite average abundance for two Magneticum Box1a/mr simulations, from Ragagnin et al. 2021

TOC:

Install

You can either )1) download the file hod_emu.py and _hod_emu_sklearn_gpr_serialized.py or (2) install it with python -mpip install git+https://github.com/aragagnin/HODEmu. The package depends only on scipy. The file hod_emu.py can be executed from your command line interface by running ./hod_emu.py in the installation folder.

Check this ipython-notebook for a guided usage on a python code: https://github.com/aragagnin/HODEmu/blob/main/examples.ipynb

Example 1: Obtain normalisation, logslope and gaussian scatter of Ns-M relation

The following command will output, respectively, normalisation A, log-slope \beta, log-scatter \sigma, and the respective standard deviation from the emulator. Since the emulator has been trained on the residual of the power-law dependency in Eq. 6, the errors are respectively, the standard deviation on log-A, on log-beta, and on log-sigma. Note that --delta can be only 200c or vir as the paper only emulates these two overdensities.

 ./hod_emu.py  200c  .27  .04   0.8  0.7   0.0 #overdensity omega_m omega_b sigma8 h0 redshift

Here below we will use hod_emyu as python library to plot the Ns-M relation. First we use hod_emu.get_emulator_m200c() to obtain an instance of the Emulator class trianed on Delta_200c, and the function emu.predict_A_beta_sigma(input) to retrieve A,\beta and \sigma.

Note that input can be evaluated on a number N of data points (in this example only one), thus being is a N x 5 numpy array and the return value is a N x 3 numpy array. The parameter emulator_std=True will also return a N x 3 numpy array with the corresponding emulator standard deviations.

import hod_emu
Om0, Ob0, s8, h0, z = 0.3, 0.04, 0.8, 0.7, 0.9

input = [[Om0, Ob0, s8, h0, 1./(1.+z)]] #the input must be a 2d array because you can feed an array of data points

emu = hod_emu.get_emulator_m200c() # use get_emulator_mvir to obtain the emulator within Delta_vir

A, beta, sigma  =  emu.predict_A_beta_sigma(input).T #the function outputs a 1x3 matrix 

masses = np.logspace(14.5,15.5,20)
Ns = A*(masses/5e14)**beta 

plt.plot(masses,Ns)
plt.fill_between(masses, Ns*(1.-sigma), Ns*(1.+sigma),alpha=0.2)
plt.xlabel(r'$M_{\rm{halo}}$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
   )
plt.xscale('log')
plt.yscale('log')

params_tuple, stds_tuple  =  emu.predict_A_beta_sigma(input, emulator_std=True) #here we also asks for Emulator std deviation

A, beta, sigma = params_tuple.T
error_logA, error_logbeta, error_logsigma = stds_tuple.T

print('A: %.3e, log-std A: %.3e'%(A[0], error_logA[0]))
print('B: %.3e, log-std beta: %.3e'%(beta[0], error_logbeta[0]))
print('sigma: %.3e, log-std sigma: %.3e'%(sigma[0], error_logsigma[0]))

Will show the following figure:

Ns-M relation produced by HODEmu

And print the following output:

A: 1.933e+00, log-std A: 1.242e-01
B: 1.002e+00, log-std beta: 8.275e-02
sigma: 6.723e-02, log-std sigma: 2.128e-01

Example 2: Produce mock catalog of galaxies

In this example we use package hmf to produce a mock catalog of haloe masses. Note that the mock number of satellite is based on a gaussian distribution with a cut on negative value (see Eq. 5 of the paper), hence the function non_neg_normal_sample.

2\cdot10^{11}M_\odot \ \ \ \tt{ and } \ \ \ \ \ r
import hmf.helpers.sample
import scipy.stats

masses = hmf.helpers.sample.sample_mf(400,14.0,hmf_model="PS",Mmax=17,sort=True)[0]    
    
def non_neg_normal_sample(loc, scale,  max_iters=1000):
    "Given a numpy-array of loc and scale, return data from only-positive normal distribution."
    vals = scipy.stats.norm.rvs(loc = loc, scale=scale)
    mask_negative = vals<0.
    if(np.any(vals[mask_negative])):
        non_neg_normal_sample(loc[mask_negative], scale[mask_negative],  max_iters=1000)
    # after the recursion, we should have all positive numbers
    
    if(np.any(vals<0.)):
        raise Exception("non_neg_normal_sample function failed to provide  positive-normal")    
    return vals

A, beta, logscatter = emu.predict_A_beta_sigma( [Om0, Ob0, s8, h0, 1./(1.+z)])[0].T

Ns = A*(masses/5e14)**beta

modelmu = non_neg_normal_sample(loc = Ns, scale=logscatter*Ns)
modelpois = scipy.stats.poisson.rvs(modelmu)
modelmock = modelpois

plt.fill_between(masses, Ns *(1.-logscatter), Ns *(1.+logscatter), label='Ns +/- log scatter from Emu', color='black',alpha=0.5)
plt.scatter(masses, modelmock , label='Ns mock', color='orange')
plt.plot(masses, Ns , label='
    
      from Emu'
    , color='black')
plt.ylim([0.1,100.])
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$M_{\rm {halo}} [M_\odot]$')
plt.ylabel(r'$N_s$')
plt.title(r'$M_\bigstar>2\cdot10^{11}M_\odot \ \ \ \tt{ and }  \ \ \ \ \  r
    )

plt.legend();

Will show the following figure:

Mock catalog of halos and satellite abundance produced by HODEmu

Owner
Antonio Ragagnin
I cook math
Antonio Ragagnin
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022