Task-based end-to-end model learning in stochastic optimization

Overview

Task-based End-to-end Model Learning in Stochastic Optimization

This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our paper Task-based End-to-end Model Learning in Stochastic Optimization.

If you find this repository helpful in your publications, please consider citing our paper.

@inproceedings{donti2017task,
  title={Task-based end-to-end model learning in stochastic optimization},
  author={Donti, Priya and Amos, Brandon and Kolter, J Zico},
  booktitle={Advances in Neural Information Processing Systems},
  pages={5484--5494},
  year={2017}
}

Introduction

As machine learning techniques have become more ubiquitous, it has become common to see machine learning prediction algorithms operating within some larger process. However, the criteria by which we train machine learning algorithms often differ from the ultimate criteria on which we evaluate them.

This repository demonstrates an end-to-end approach for learning probabilistic machine learning models within the context of stochastic programming, in a manner that directly captures the ultimate task-based objective for which they will be used. Specifically, we evaluate our approach in the context of (a) a generic inventory stock problem and (b) an electrical grid scheduling task based on over eight years of data from PJM.

Please see our paper Task-based End-to-end Model Learning in Stochastic Optimization and the code in this repository (locuslab/e2e-model-learning) for more details about the general approach proposed and our initial experimental implementations.

Setup and Dependencies

Inventory Stock Problem (Newsvendor) Experiments

Experiments considering a "conditional" variation of the inventory stock problem. Problem instances are generated via random sampling.

newsvendor
├── main.py - Run inventory stock problem experiments. (See arguments.)
├── task_net.py - Functions for our task-based end-to-end model learning approach.
├── mle.py - Functions for linear maximum likelihood estimation approach.
├── mle_net.py - Functions for nonlinear maximum likelihood estimation approach.
├── policy_net.py - Functions for end-to-end neural network policy model.
├── batch.py - Helper functions for minibatched evaluation.
├── plot.py - Plot experimental results.
└── constants.py - Constants to set GPU vs. CPU.

Load Forecasting and Generator Scheduling Experiments

Experiments considering a realistic grid-scheduling task, in which electricity generation is scheduled based on some (unknown) distribution over electricity demand. Historical load data for these experiments were obtained from PJM.

power_sched
├── main.py - Run load forecasting problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE, cost-weighted RMSE, and task nets.
├── plot.py - Plot experimental results.
├── constants.py - Constants to set GPU vs. CPU.
└── pjm_load_data_*.txt - Historical load data from PJM.

Price Forecasting and Battery Storage Experiments

Experiments considering a realistic battery arbitrage task, in which a power grid-connected battery generates a charge/discharge schedule based on some (unknown) distribution over energy prices. Historical energy price data for these experiments were obtained from PJM.

battery_storage
├── main.py - Run battery storage problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE and task nets.
├── calc_stats.py - Calculate experimental result stats.
├── constants.py - Constants to set GPU vs. CPU.
└── storage_data.csv - Historical energy price data from PJM.

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1252522.

Licensing

Unless otherwise stated, the source code is copyright Carnegie Mellon University and licensed under the Apache 2.0 License.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023