Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

Overview

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos

Introduction

This repo is official PyTorch implementation of IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos (CVPRW 2021).

Directory

Root

The ${ROOT} is described as below.

${ROOT}  
|-- data  
|-- common  
|-- main  
|-- tool
|-- output  
  • data contains data loading codes and soft links to images and annotations directories.
  • common contains kernel codes for IntegralAction.
  • main contains high-level codes for training or testing the network.
  • tool contains a code to merge models of rgb_only and pose_only stages.
  • output contains log, trained models, visualized outputs, and test result.

Data

You need to follow directory structure of the data as below.

${ROOT}  
|-- data  
|   |-- Kinetics
|   |   |-- data
|   |   |   |-- frames 
|   |   |   |-- kinetics-skeleton
|   |   |   |-- Kinetics50_train.json
|   |   |   |-- Kinetics50_val.json
|   |   |   |-- Kinetics400_train.json
|   |   |   |-- Kinetics400_val.json
|   |-- Mimetics
|   |   |-- data  
|   |   |   |-- frames 
|   |   |   |-- pose_results 
|   |   |   |-- Mimetics50.json
|   |   |   |-- Mimetics400.json
|   |-- NTU
|   |   |-- data  
|   |   |   |-- frames 
|   |   |   |-- nturgb+d_skeletons
|   |   |   |-- NTU_train.json
|   |   |   |-- NTU_test.json

To download multiple files from Google drive without compressing them, try this. If you have a problem with 'Download limit' problem when tried to download dataset from google drive link, please try this trick.

* Go the shared folder, which contains files you want to copy to your drive  
* Select all the files you want to copy  
* In the upper right corner click on three vertical dots and select “make a copy”  
* Then, the file is copied to your personal google drive account. You can download it from your personal account.  

Output

You need to follow the directory structure of the output folder as below.

${ROOT}  
|-- output  
|   |-- log  
|   |-- model_dump  
|   |-- result  
|   |-- vis  
  • Creating output folder as soft link form is recommended instead of folder form because it would take large storage capacity.
  • log folder contains training log file.
  • model_dump folder contains saved checkpoints for each epoch.
  • result folder contains final estimation files generated in the testing stage.
  • vis folder contains visualized results.

Running IntegralAction

Start

  • Install PyTorch and Python >= 3.7.3 and run sh requirements.sh.
  • In the main/config.py, you can change settings of the model including dataset to use, network backbone, and input size and so on.
  • There are three stages. 1) rgb_only , 2) pose_only, and 3) rgb+pose. In the rgb_only stage, only RGB stream is trained, and in the pose_only stage, only pose stream is trained. Finally, rgb+pose stage initializes weights from the previous two stages and continue training by the pose-drive integration.

Train

1. rgb_only stage

In the main folder, run

python train.py --gpu 0-3 --mode rgb_only

to train IntegralAction in the rgb_only stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3. Then, backup the trained weights by running

mkdir ../output/model_dump/rgb_only
mv ../output/model_dump/snapshot_*.pth.tar ../output/model_dump/rgb_only/.

2. pose_only stage

In the main folder, run

python train.py --gpu 0-3 --mode pose_only

to train IntegralAction in the pose_only stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.
Then, backup the trained weights by running

mkdir ../output/model_dump/pose_only
mv ../output/model_dump/snapshot_*.pth.tar ../output/model_dump/pose_only/.

3. rgb+pose stage

In the tool folder, run

cp ../output/model_dump/rgb_only/snapshot_29.pth.tar snapshot_29_rgb_only.pth.tar
cp ../output/model_dump/pose_only/snapshot_29.pth.tar snapshot_29_pose_only.pth.tar
python merge_rgb_only_pose_only.py
mv snapshot_0.pth.tar ../output/model_dump/.

In the main folder, run

python train.py --gpu 0-3 --mode rgb+pose --continue

to train IntegralAction in the rgb+pose stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.

Test

Place trained model at the output/model_dump/. Choose the stage you want to test from one of [rgb_only, pose_only, rgb+pose].

In the main folder, run

python test.py --gpu 0-3 --mode $STAGE --test_epoch 29

to test IntegralAction in $STAGE stage (should be one of [rgb_only, pose_only, rgb+pose]) on the GPU 0,1,2,3 with 29th epoch trained model. --gpu 0,1,2,3 can be used instead of --gpu 0-3.

Results

Here I report the performance of the IntegralAction.

Kinetics50

  • Download IntegralAction trained on [Kinetics50].
  • Kinetics50 is a subset of Kinetics400. It mainly contains videos with human motion-related action classes, sampled from Kinetics400.
(base) mks0601:~/workspace/IntegralAction/main$ python test.py --gpu 5-6 --mode rgb+pose --test_epoch 29
>>> Using GPU: 5,6
04-15 11:48:25 Creating dataset...
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
04-15 11:48:25 Load checkpoint from ../output/model_dump/snapshot_29.pth.tar
04-15 11:48:25 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 773/773 [03:09<00:00,  5.11it/s]
Evaluation start...
Top-1 accuracy: 72.2087
Top-5 accuracy: 92.2735
Result is saved at: ../output/result/kinetics_result.json

Mimetics

  • Download IntegralAction trained on [Kinetics50].
  • Kinetics50 is a subset of Kinetics400. It mainly contains videos with human motion-related action classes, sampled from Kinetics400.
  • Note that Mimetics is used only for the testing purpose.
(base) mks0601:~/workspace/IntegralAction/main$ python test.py --gpu 5-6 --mode rgb+pose --test_epoch 29
>>> Using GPU: 5,6
04-15 11:52:20 Creating dataset...
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
04-15 11:52:20 Load checkpoint from ../output/model_dump/snapshot_29.pth.tar
04-15 11:52:20 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 187/187 [02:14<00:00,  4.93it/s]
Evaluation start...
Top-1 accuracy: 26.5101
Top-5 accuracy: 50.5034
Result is saved at: ../output/result/mimetics_result.json

Reference

@InProceedings{moon2021integralaction,
  title={IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos},
  author={Moon, Gyeongsik and Kwon, Heeseung and Lee, Kyoung Mu and Cho, Minsu},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW)}, 
  year={2021}
}
Owner
Gyeongsik Moon
Postdoc in CVLAB, SNU, Korea
Gyeongsik Moon
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022