IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos
Introduction
This repo is official PyTorch implementation of IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos (CVPRW 2021).
Directory
Root
The ${ROOT} is described as below.
${ROOT}
|-- data
|-- common
|-- main
|-- tool
|-- output
datacontains data loading codes and soft links to images and annotations directories.commoncontains kernel codes for IntegralAction.maincontains high-level codes for training or testing the network.toolcontains a code to merge models ofrgb_onlyandpose_onlystages.outputcontains log, trained models, visualized outputs, and test result.
Data
You need to follow directory structure of the data as below.
${ROOT}
|-- data
| |-- Kinetics
| | |-- data
| | | |-- frames
| | | |-- kinetics-skeleton
| | | |-- Kinetics50_train.json
| | | |-- Kinetics50_val.json
| | | |-- Kinetics400_train.json
| | | |-- Kinetics400_val.json
| |-- Mimetics
| | |-- data
| | | |-- frames
| | | |-- pose_results
| | | |-- Mimetics50.json
| | | |-- Mimetics400.json
| |-- NTU
| | |-- data
| | | |-- frames
| | | |-- nturgb+d_skeletons
| | | |-- NTU_train.json
| | | |-- NTU_test.json
- Download Kinetics parsed data [data] [website]
- Download Mimetics parsed data [data] [website]
- Download NTU parsed data [data] [website]
- All annotation files follow MS COCO format.
- If you want to add your own dataset, you have to convert it to MS COCO format.
To download multiple files from Google drive without compressing them, try this. If you have a problem with 'Download limit' problem when tried to download dataset from google drive link, please try this trick.
* Go the shared folder, which contains files you want to copy to your drive
* Select all the files you want to copy
* In the upper right corner click on three vertical dots and select “make a copy”
* Then, the file is copied to your personal google drive account. You can download it from your personal account.
Output
You need to follow the directory structure of the output folder as below.
${ROOT}
|-- output
| |-- log
| |-- model_dump
| |-- result
| |-- vis
- Creating
outputfolder as soft link form is recommended instead of folder form because it would take large storage capacity. logfolder contains training log file.model_dumpfolder contains saved checkpoints for each epoch.resultfolder contains final estimation files generated in the testing stage.visfolder contains visualized results.
Running IntegralAction
Start
- Install PyTorch and Python >= 3.7.3 and run
sh requirements.sh. - In the
main/config.py, you can change settings of the model including dataset to use, network backbone, and input size and so on. - There are three stages. 1)
rgb_only, 2)pose_only, and 3)rgb+pose. In thergb_onlystage, only RGB stream is trained, and in thepose_onlystage, only pose stream is trained. Finally,rgb+posestage initializes weights from the previous two stages and continue training by the pose-drive integration.
Train
1. rgb_only stage
In the main folder, run
python train.py --gpu 0-3 --mode rgb_only
to train IntegralAction in the rgb_only stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3. Then, backup the trained weights by running
mkdir ../output/model_dump/rgb_only
mv ../output/model_dump/snapshot_*.pth.tar ../output/model_dump/rgb_only/.
2. pose_only stage
In the main folder, run
python train.py --gpu 0-3 --mode pose_only
to train IntegralAction in the pose_only stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.
Then, backup the trained weights by running
mkdir ../output/model_dump/pose_only
mv ../output/model_dump/snapshot_*.pth.tar ../output/model_dump/pose_only/.
3. rgb+pose stage
In the tool folder, run
cp ../output/model_dump/rgb_only/snapshot_29.pth.tar snapshot_29_rgb_only.pth.tar
cp ../output/model_dump/pose_only/snapshot_29.pth.tar snapshot_29_pose_only.pth.tar
python merge_rgb_only_pose_only.py
mv snapshot_0.pth.tar ../output/model_dump/.
In the main folder, run
python train.py --gpu 0-3 --mode rgb+pose --continue
to train IntegralAction in the rgb+pose stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.
Test
Place trained model at the output/model_dump/. Choose the stage you want to test from one of [rgb_only, pose_only, rgb+pose].
In the main folder, run
python test.py --gpu 0-3 --mode $STAGE --test_epoch 29
to test IntegralAction in $STAGE stage (should be one of [rgb_only, pose_only, rgb+pose]) on the GPU 0,1,2,3 with 29th epoch trained model. --gpu 0,1,2,3 can be used instead of --gpu 0-3.
Results
Here I report the performance of the IntegralAction.
Kinetics50
- Download IntegralAction trained on [Kinetics50].
- Kinetics50 is a subset of Kinetics400. It mainly contains videos with human motion-related action classes, sampled from Kinetics400.
(base) mks0601:~/workspace/IntegralAction/main$ python test.py --gpu 5-6 --mode rgb+pose --test_epoch 29
>>> Using GPU: 5,6
04-15 11:48:25 Creating dataset...
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
04-15 11:48:25 Load checkpoint from ../output/model_dump/snapshot_29.pth.tar
04-15 11:48:25 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 773/773 [03:09<00:00, 5.11it/s]
Evaluation start...
Top-1 accuracy: 72.2087
Top-5 accuracy: 92.2735
Result is saved at: ../output/result/kinetics_result.json
Mimetics
- Download IntegralAction trained on [Kinetics50].
- Kinetics50 is a subset of Kinetics400. It mainly contains videos with human motion-related action classes, sampled from Kinetics400.
- Note that Mimetics is used only for the testing purpose.
(base) mks0601:~/workspace/IntegralAction/main$ python test.py --gpu 5-6 --mode rgb+pose --test_epoch 29
>>> Using GPU: 5,6
04-15 11:52:20 Creating dataset...
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
04-15 11:52:20 Load checkpoint from ../output/model_dump/snapshot_29.pth.tar
04-15 11:52:20 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 187/187 [02:14<00:00, 4.93it/s]
Evaluation start...
Top-1 accuracy: 26.5101
Top-5 accuracy: 50.5034
Result is saved at: ../output/result/mimetics_result.json
Reference
@InProceedings{moon2021integralaction,
title={IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos},
author={Moon, Gyeongsik and Kwon, Heeseung and Lee, Kyoung Mu and Cho, Minsu},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW)},
year={2021}
}


