(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

Related tags

Deep LearningProHMR
Overview

ProHMR - Probabilistic Modeling for Human Mesh Recovery

Code repository for the paper:
Probabilistic Modeling for Human Mesh Recovery
Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman, Kostas Daniilidis
ICCV 2021
[paper] [project page] [colab notebook]

teaser

Installation instructions

We recommend creating a clean conda environment and install all dependencies. You can do this as follows:

conda env create -f environment.yml

After the installation is complete you can activate the conda environment by running:

conda activate prohmr

Alternatively, you can also create a virtual environment:

python -m venv .prohmr_venv
source .prohmr_venv/bin/activate
pip install -r requirements.txt

The last step is to install prohmr as a Python package. This will allow you to import it from anywhere in your system. Since you might want to modify the code, we recommend installing as follows:

python setup.py develop

In case you want to evaluate our approach on Human3.6M, you also need to manually install the pycdf package of the spacepy library to process some of the original files. If you face difficulties with the installation, you can find more elaborate instructions here.

Fetch data

Download the pretrained model checkpoint together with some additional data (joint regressors, etc.) and place them under data/. We provide a script to fetch the necessary data for training and evaluation. You need to run:

./fetch_data.sh

Besides these files, you also need to download the SMPL model. You will need the neutral model for training and running the demo code, while the male and female models will be necessary for preprocessing the 3DPW dataset. Please go to the websites for the corresponding projects and register to get access to the downloads section. Create a folder data/smpl/ and place the models there.

Run demo code

The easiest way to try our demo is by providing images with their corresponding OpenPose detections. These are used to compute the bounding boxes around the humans and optionally fit the SMPL body model to the keypoint detections. We provide some example images in the example_data/ folder. You can test our network on these examples by running:

python demo.py --img_folder=example_data/images --keypoint_folder=example_data/keypoints --out_folder=out --run_fitting

You might see some warnings about missing keys for SMPL components, which you can ignore. The code will save the rendered results for the regression and fitting in the newly created out/ directory. By default the demo code performs the fitting in the image crop and not in the original image space. If you want to instead fit in the original image space you can pass the --full_frame flag.

Colab Notebook

We also provide a Colab Notebook here where you can test our method on videos from YouTube. Check it out!

Dataset preprocessing

Besides the demo code, we also provide code to train and evaluate our models on the datasets we employ for our empirical evaluation. Before continuing, please make sure that you follow the details for data preprocessing.

Run evaluation code

The evaluation code is contained in eval/. We provide 4 different evaluation scripts.

  • eval_regression.py is used to evaluate ProHMR as a regression model as in Table 1 of the paper.
  • eval_keypoint_fitting.py is used to evaluate the fitting on 2D keypoints as in Table 3 of the paper.
  • eval_multiview.py is used to evaluate the multi-view refinement as in Table 5 of the paper.
  • eval_skeleton.py is used to evaluate the probablistic 2D pose lifiting network similarly with Table 6 of the main paper. Example usage:
python eval/eval_keypoint_fitting.py --dataset=3DPW-TEST

Running the above command will compute the Reconstruction Error before and after the fitting on the test set of 3DPW. For more information on the available command line options you can run the command with the --help argument.

Run training code

Due to license limitiations, we cannot provide the SMPL parameters for Human3.6M (recovered using MoSh). Even if you do not have access to these parameters, you can still use our training code using data from the other datasets. Again, make sure that you follow the details for data preprocessing. Alternatively you can use the SMPLify 3D fitting code to generate SMPL parameter annotations by fitting the model to the 3D keypoints provided by the dataset. Example usage:

python train/train_prohmr.py --root_dir=prohmr_reproduce/

This will train the model using the default config file prohmr/configs/prohmr.yaml as described in the paper. It will also create the folders prohmr_reproduce/checkpoints and prohmr_reproduce/tensorboard where the model checkpoints and Tensorboard logs will be saved.

We also provide the training code for the probabilistic version of Martinez et al. We are not allowed to redistribute the Stacked Hourglass keypoint detections used in training the model in the paper, so in this version of the code we replace them with the ground truth 2D keypoints of the dataset. You can train the skeleton model by running:

python train/train_skeleton.py --root_dir=skeleton_lifting/

Running this script will produce a similar output with the ProHMR training script.

Acknowledgements

Parts of the code are taken or adapted from the following repos:

Citing

If you find this code useful for your research or the use data generated by our method, please consider citing the following paper:

@Inproceedings{kolotouros2021prohmr,
  Title          = {Probabilistic Modeling for Human Mesh Recovery},
  Author         = {Kolotouros, Nikos and Pavlakos, Georgios and Jayaraman, Dinesh and Daniilidis, Kostas},
  Booktitle      = {ICCV},
  Year           = {2021}
}
Owner
Nikos Kolotouros
I am a CS PhD student at the University of Pennsylvania working on Computer Vision and Machine Learning.
Nikos Kolotouros
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023