Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

Related tags

Deep LearningJump
Overview

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies

project page

paper

demo video

image_0032

Prerequisites

Important Notes

We suspect there are bugs in linux gcc > 9.2 or kernel > 5.3 or our code somehow is not compatible with that. Our code has large numerical errors from unknown source given the new C++ compiler. Please use older versions of C++ compiler or test the project on Windows.

C++ Setup

This project has C++ components. There is a cmake project inside Kinematic folder. We have setup the CMake project so that it can be built on both linux and Windows. Use cmake, cmake-gui or visual studio to build the project. It requires eigen library.

Python Setup

Install the Python requirements listed in requirements.txt. The version shouldn't matter. You should be safe to install the latest versions of these packages.

Rendering Setup

To visualize training results, please set up our simulation renderer.

  • Clone and follow build instructions in UnityKinematics. This is a flexible networking utility that will send raw simulation geometry data to Unity for rendering purpose.
  • Copy [UnityKinematics build folder]/pyUnityRenderer to this root project folder.
  • Here's a sample Unity project called SimRenderer in which you can render the scenes for this project. Clone SimRenderer outside this project folder.
  • After building UnityKinematics, copy [UnityKinematics build folder]/Assets/Scripts/API to SimRenderer/Assets/Scripts. Start Unity, load SimRenderer project and it's ready to use.

Training P-VAE

We have included a pre-trained model in results/vae/models/13dim.pth. If you would like to retrain the model, run the following:

python train_pose_vae.py

This will generate the new model in results/vae/test**/test.pth. Copy the .pth file and the associated .pth.norm.npy file into results/vae/models. Change presets/default/vae/vae.yaml under the model key to use your new model.

Train Run-ups

python train.py runup

Modify presets/custom/runup.yaml to change parts of the target take-off features. Refer to Appendix A in the paper to see reference parameters.

After training, run

python once.py runup no_render results/runup***/checkpoint_2000.tar

to generate take-off state file in npy format used to train take-off controller.

Train Jumpers

Open presets/custom/jump.yaml, change env.highjump.initial_state to the path to the generated take-off state file, like results/runup***/checkpoint_2000.tar.npy. Then change env.highjump.wall_rotation to specify the wall orientation (in degrees). Refer to Appendix A in the paper to see reference parameters (note that we use radians in the paper). Run

python train.py jump

to start training.

Start the provided SimRenderer (in Unity), enter play mode, the run

python evaluate.py jump results/jump***/checkpoint_***.tar

to evaluate the visualize the motion at any time. Note that env.highjump.initial_wall_height must be set to the training height at the time of this checkpoint for correct evaluation. Training height information is available through training logs, available both in the console and through tensorboard logs. You can start tensorboard through

python -m tensorboard.main --bind_all --port xx --logdir results/jump***/
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022