offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

Overview

LifelongReID

Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu Liu, Erwin M. Bakker and Michael S. Lew.

We provide a lifelong person reid toolbox lreid in this repo.

More details please see our paper.

Framework

Citation

@InProceedings{pu_cvpr2021,
author = {Pu, Nan and Chen, Wei and Liu, Yu and Bakker, Erwin M. and Lew, Michael S.},
title = {Lifelong Person Re-Identification via Adaptive Knowledge Accumulation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}

Install

Enviornment

conda create -n lreid python=3.7
conda activate lreid
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0 -c pytorch
conda install opencv
pip install Cython sklearn numpy prettytable easydict tqdm matplotlib

For visualization, you might need to install visdom:

pip install visdom

If you want to use fp16, please follow https://github.com/NVIDIA/apex to install apex, which is just a optional pakage. The following codes work in our enviroment, but it could not work on other enviroment.

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

lreid toolbox

Then, you could clone our project and install lreid

git clone https://github.com/TPCD/LifelongReID
cd LifelongReID
python setup.py develop

Dataset prepration

Please follow Torchreid_Dataset_Doc to download datasets and unzip them to your data path (we refer to 'machine_dataset_path' in train_test.py). Alternatively, you could download some of unseen-domain datasets in DualNorm.

Train & Test

python train_test.py

Acknowledgement

The code is based on the PyTorch implementation of the Torchreid and Person_reID_baseline_pytorch.

Owner
PeterPu
Growth is like training a deep neural network, which needs supervision and finetunes.
PeterPu
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022