[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

Overview

IVOS-W

Paper

Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanling Zhang, Shenghua Gao.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[Preprint] [Supplementary Material] [Poster]

Getting Started

Create the environment

# create conda env
conda create -n ivosw python=3.7
# activate conda env
conda activate ivosw
# install pytorch
conda install pytorch=1.3 torchvision
# install other dependencies
pip install -r requirements.txt

We adopt MANet, IPN, and ATNet as the VOS algorithms. Please follow the instructions to install the dependencies.

git clone https://github.com/yuk6heo/IVOS-ATNet.git VOS/ATNet
git clone https://github.com/lightas/CVPR2020_MANet.git VOS/MANet
git clone https://github.com/zyy-cn/IPN.git VOS/IPN

Dataset Preparation

  • DAVIS 2017 Dataset
    • Download the data and human annotated scribbles here.
    • Place DAVIS folder into root/data.
  • YouTube-VOS Dataset
    • Download the YouTube-VOS 2018 version here.
    • Clean up the annotations following here.
    • Download our annotated scribbles here.

Create a DAVIS-like structure of YouTube-VOS by running the following commands:

python datasets/prepare_ytbvos.py --src path/to/youtube_vos --scb path/to/scribble_dir

Evaluation

For evaluation, please download the pretrained agent model and quality assessment model, then place them into root/weights and run the following commands:

python eval_agent_{atnet/manet/ipn}.py with setting={oracle/wild} dataset={davis/ytbvos} method={random/linspace/worst/ours}

The results will be stored in results/{VOS}/{setting}/{dataset}/{method}/summary.json

Note: The results may fluctuate slightly with different versions of networkx, which is used by davisinteractive to generate simulated scribbles.

Training

First, prepare the data used to train the agent by downloading reward records and pretrained experience buffer, place them into root/train, or generate them from scratch:

python produce_reward.py
python pretrain_agent.py

To train the agent:

python train_agent.py

To train the segmentation quality assessment model:

python generate_data.py
python quality_assessment.py

Citation

@inproceedings{IVOSW,
  title     = {Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild},
  author    = {Zhaoyuan Yin and
               Jia Zheng and
               Weixin Luo and
               Shenhan Qian and
               Hanling Zhang and
               Shenghua Gao},
  booktitle = {CVPR},
  year      = {2021}
}

LICENSE

The code is released under the MIT license.

Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022