[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Related tags

Deep LearningDePT
Overview

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems

Introduction

Multi-agent control is a central theme in the Cyber-Physical Systems (CPS). However, current control methods either receive non-Markovian states due to insufficient sensing and decentralized design, or suffer from poor convergence. This paper presents the Delayed Propagation Transformer (DePT), a new transformer-based model that specializes in the global modeling of CPS while taking into account the immutable constraints from the physical world. DePT induces a cone-shaped spatial-temporal attention prior, which injects the information propagation and aggregation principles and enables a global view. With physical constraint inductive bias baked into its design, our DePT is ready to plug and play for a broad class of multi-agent systems. The experimental results on one of the most challenging CPS -- network-scale traffic signal control system in the open world -- demonstrated the superior performance of DePT on synthetic and real-world datasets.

Method

flow

scenario

tu

Installation Guide

The RL training loop of this repo is inherited from Colight repo: https://github.com/wingsweihua/colight

First, create new environment

This step is optional. CoLight (teacher model for DePT with imitation learning) requires tensorflow==1.x.

conda create -y -n 
   
     python=3.6
conda activate 
    

    
   

Then, install cityflow

Follow the [Official installation guide]

Or optionally, use the following commands without docker (docker is recommended but not mandatory)

git clone https://github.com/cityflow-project/CityFlow.git
cd CityFlow
pip install .

To test if you have successfully installed cityflow, check if the following python codes can pass without error:

import cityflow
eng = cityflow.Engine

Then, install requirements for teacher Colight

The RL training loop of DePT is based on Colight, they share the same dependencies. A complete environment that passed the test is provided in DePT/requirements.txt.

Training Guide

First, train teacher Colight:

set use_DePT = False in DePT/config.py, then run main.py

Second, pre-fit attention prior

Initialize model and pre-fit the priors using /DePT/DePT_src/pretrain_decayer.py

If downgrading DePT to transformer and not using the spatial tempooral cone shaped prior, skip this step.

Before training, keep track of the following configurations for training DePT:

If training a colight teacher model, set use_DePT = False in DePT/config.py: DIC_COLIGHT_AGENT_CONF. If training the DePT model, set it to False.

If enabling the spatial temporal cone shaped prior (default is enabled), set the following in DePT/model.py.

ablation1_cone = False
ablation2_time = False
only_1cone = False

If using Colight as the teacher model, set which_teacher='colight' in DePT/DePT_src/model.py, and set colight_fname to the pre-trained Colight teacher .h5 file.

Train DePT:

Example commands
python main.py 

python main.py --cnt 3600  --rounds 100  --gen 4  

python main.py --cnt 3600  --rounds 100  --gen 5  --volume='newyork' --road_net='28_7' --suffix='real_triple'

parameter meaning:

--rounds will specify the number of rounds generated, each round is 1 hour simulation time; 100 rounds are recommended.

--gen will specify number of generators; all generators work in parallel. 1 to 5 are recommended.

Simulation Platform that passed the test:

Ubuntu 20.04.2

RTX A6000

Driver Version: 460.91.03 CUDA Version: 11.2

Optional step before training:

Delete the following dirs (Automatically generated files) won't cause error in training, except losing your redundant training histories.

rm -rf model 
rm -rf records

Citation

comming soon.
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Saeed Lotfi 28 Dec 12, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022