VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

Overview

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations" by Ying Chen, Hojung Kwon, Hazer Inaltekin, and Maria Gorlatova.

Outline

I. VRViewportPose Dataset

1. Data Collection

We conducted an IRB-approved data collection of the viewport pose in 3 VR games and across 3 different types of VR user interfaces, with over 5.5 hours of user data in total.

A. Stimuli

We collected the viewport pose for desktop, headset, and phone-based virtual reality (VR), with open-source VR games with different scene complexities from Unity store, containing 1 indoor (Office [1]) and 2 outdoor (Viking Village [2], Lite [3]) scenarios. In desktop VR, rotational and translational movements are made using the mouse and up arrow key. The poses in the headset VR are collected with a standalone Oculus Quest 2, where rotational and translational movements are made by moving the head and by using the controller thumbstick. The poses in the phone-based VR are collected with Google Pixel 2 XL and Nokia 7.1 with Android 9, and rotational and translational movements are made by moving the motion-sensor-equipped phone and by tapping on the screen using one finger.

Figure 1: Open-source VR games used for the data collection: (a) Office; (b) Viking Village; (c) Lite.

B. Procedure

The data collection, conducted under COVID-19 restrictions, involved unaided and Zoom-supported remote data collection by distributing desktop and phone-based VR apps, and a small number of socially distanced in-lab experiments for headset and phone-based VR. We recorded the viewport poses of 20 participants (9 male, 11 female, age 20-48), 5 participants (2 male, 3 female, age 23-33), and 5 participants (3 male, 2 female, age 23-33) in desktop, headset, and phone-based VR, respectively. The participants were seated in front of a PC, wore the headset while standing, and held a phone in landscape mode while standing in desktop, headset, and phone-based VR, respectively. For desktop and phone-based VR, each participant explored VK, Lite, and Office for 5, 5, and 2 minutes, respectively. For headset VR, the participants only explored each game for 2 minutes to avoid simulator sickness. Considering the device computation capability and the screen refresh rate, the timestamp and viewport pose of each participant are recorded at a target frame rate of 60 Hz, 72 Hz, and 60 Hz for desktop, headset, and phone-based VR, respectively. For each frame, we record the timestamp, the x, y, z positions and the roll, pitch, and yaw Euler orientation angles. For the Euler orientation angles β, γ, α, the intrinsic rotation orders are adopted, i.e., the viewport pose is rotated α degrees around the z-axis, β degrees around the x-axis, and γ degrees around the y-axis. We randomize the initial viewport position in VR games over the whole bounding area. We fix the initial polar angle of the viewport to be 90 degree, and uniformly randomize the initial azimuth angle on [-180,180) degree.

2. Download the Dataset

The dataset can be download here.

A. The structure of the dataset

The dataset follows the hierarchical file structure shown below:

VR_Pose
└───data_Desktop
│   │
│   └───Office_Desktop_1.txt
│   └───VikingVillage_Desktop_1.txt
│   └───Lite_Desktop_1.txt
│   └───Office_Desktop_2.txt
│   └───VikingVillage_Desktop_2.txt
│   └───Lite_Desktop_2.txt
│   ...
│
└───data_Oculus
│   │
│   └───Office_Oculus_1.txt
│   └───VikingVillage_Oculus_1.txt
│   └───Lite_Oculus_1.txt
│   └───Office_Oculus_2.txt
│   └───VikingVillage_Oculus_2.txt
│   └───Lite_Oculus_2.txt
|   ...
|
└───data_Phone
...

There are 3 sub-folders corresponding to the different VR interfaces. In the subfolder of data_Desktop, there are 60 TXT files, corresponding to 20 participants, each of them experiencing 3 VR games. There are 15 TXT files in both the data_Oculus and data_Phone subfolders, corresponding to 5 participants experiencing 3 VR games. In total, there are over 5.5 hours of user data.

3. Extract the Orientation and Position Models

The OrientationModel.py and PositionModel.py are used to extract the orientation and position models for VR viewport pose, respectively. Before running the scripts in this repository, you need to download the repository and install the necessary tools and libraries on your computer, including scipy, numpy, pandas, fitter, and matplotlib.

A. Orientation model

Data processing

We convert the recorded Euler angles to polar angle θ and azimuth angle ϕ. After applying rotation matrix R, we have

From the above equation, θ is calculated as θ=sinαsinγ-cosαsinβcosγ, and ϕ is given by

where ϕ=atan((cosγsinαsinβ+cosαsinγ)/(cosβcosγ)).

After we obtain the polar and azimuth angles, we fit the polar angle, polar angle change, and azimuth angle change to a set of statistical models and mixed models (of two statistical models).

Orientation model script

The orientaion model script is provided via https://github.com/VRViewportPose/VRViewportPose/blob/main/OrientationModel.py. To obtain the orientation model, follow the procedure below:

a. Download and extract the VR viewport pose dataset.

b. Change the filePath variable in OrientationModel.py to the file location of the pose dataset.

c. You can directly run OrientationModel.py (python .\OrientationModel.py). It will automatically run the pipeline.

d. The generated EPS images named "polar_fit_our_dataset.eps", "polar_change.eps", "azimuth_change.eps", and "ACF_our_dataset.eps" will be saved in a folder. "polar_fit_our_dataset.eps", "polar_change.eps", and "azimuth_change.eps" show the distribution of the experimental data for polar angle, polar angle change, and azimuth angle change fitted by different statistical distributions, respectively. "ACF_our_dataset.eps" shows the autocorrelation function (ACF) of polar and azimuth angle samples that are Δt s apart.

B. Position model

Data processing

We apply the standard angle model proposed in [5] to extract flights from the trajectories. An example of the collected trajectory for one user in Lite and the extracted flights is shown below.

Position model script

The position model script is provided via https://github.com/VRViewportPose/VRViewportPose/blob/main/PositionModel.py. To obtain the position model, follow the procedure below:

a. Download and extract the VR viewport pose dataset.

b. Change the filePath variable in PositionModel.py to the file location of the pose dataset.

c. You can directly run PositionModel.py (python .\PositionModel.py). It will automatically run the pipeline.

d. The generated EPS images named "flight_sample.eps", "flight.eps", "pausetime_distribution.eps", and "correlation.eps" will be saved in a folder. "flight_sample.eps" shows an example of the collected trajectories and the corresponding flights. "flight.eps" and "pausetime_distribution.eps" show distributions of the flight time and the pause duration for collected samples, respectively. "correlation.eps" shows the correlation of the azimuth angle and the walking direction.

II. Visibility Similarity

4. Analytical Results

The codes for analyzing the visibility similarity can be download here.

a. You will see three files after extracting the ZIP file. Analysis_Visibility_Similarity.m sets the parameters for the orientation model, position model, and the visibility similarity model, and calculates the analytical results of visibility similarity. calculate_m_k.m calculates the k-th moment of the position displacement, and calculate_hypergeom.m is used to calculate the hypergeometric function. b. Run the Analysis_Visibility_Similarity.m. You can get the analytical results of visibility similarity.

5. Implementation of ALG-ViS

The codes for implementing the ALG-ViS can be downloaded here. Tested with Unity 2019.2.14f1 and Oculus Quest 2 with build 30.0.

a. In Unity Hub, create a new 3D Unity project. Download ZIP file and unzip in the "Assets" folder of the Unity project.

b. Install Android 9.0 'Pie' (API Level 28) or higher installed using the SDK Manager in Android Studio.

c. Navigate to File>Build Settings>Player Settings. Set 'Minimum API Level' to be Android 9.0 'Pie' (API Level 28) or higher. In 'Other Settings', make sure only 'OpenGLES3' is selected. In 'XR Settings', check 'Virtual Reality Selected' and add 'Oculus' to the 'Virtual Reality SDKs'. Rename your 'CompanyName' and 'GameName', and the Bundle Identifier string com.CompanyName.GameName will be the unique package name of your application installed on the Oculus device.

d. Copy the "pose.txt" and "visValue.txt" to the Application.persistentDataPath which points to /storage/emulated/0/Android/data/ /files, where is com.CompanyName.GameName.

e. Navigate to Window>Asset Store. Search for the virtual reality game (e.g., the 'Make Your Fantasy Game - Lite' game [3]) in the Asset Store, and select 'Buy Now' and 'Import'.

f. Make sure only the 'ALG_ViS' scene is selected in 'Scenes in Build'. Select your connected target device (Oculus Quest 2) and click 'Build and Run'.

g. The output APK package will be saved to the file path you specify, while the app will be installed on the Oculus Quest 2 device connected to your computer.

h. Disconnect the Oculus Quest 2 from the computer. After setting up a new Guardian Boundary, the vritual reality game with ALG-ViS will be automatically loaded.

Citation

Please cite the following paper in your publications if the dataset or code helps your research.

 @inproceedings{Chen22VRViewportPose,
  title={{VR} Viewport Pose Model for Quantifying and Exploiting Frame Correlations},
  author={Chen, Ying and Kwon, Hojung and Inaltekin, Hazer and Gorlatova, Maria},
  booktitle={Proc. IEEE INFOCOM},
  year={2022}
}

Acknowledgments

We thank the study's participants for their time in the data collection. The contributors of the dataset and code are Ying Chen and Maria Gorlatova. For questions on this repository or the related paper, please contact Ying Chen at yc383 [AT] duke [DOT] edu.

References

[1] Unity Asset Store. (2020) Office. https://assetstore.unity.com/packages/3d/environments/snapsprototype-office-137490

[2] Unity Technologies. (2015) Viking Village. https://assetstore.unity.com/packages/essentials/tutorialprojects/viking-village-29140

[3] Xiaolianhua Studio. (2017) Lite. https://assetstore.unity.com/packages/3d/environments/fantasy/makeyour-fantasy-game-lite-8312

[4] Oculus. (2021) Oculus Quest 2. https://www.oculus.com/quest-2/

[5] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the Levy-walk nature of human mobility,” in Proc. IEEE INFOCOM, 2008.

Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022