VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

Overview

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations" by Ying Chen, Hojung Kwon, Hazer Inaltekin, and Maria Gorlatova.

Outline

I. VRViewportPose Dataset

1. Data Collection

We conducted an IRB-approved data collection of the viewport pose in 3 VR games and across 3 different types of VR user interfaces, with over 5.5 hours of user data in total.

A. Stimuli

We collected the viewport pose for desktop, headset, and phone-based virtual reality (VR), with open-source VR games with different scene complexities from Unity store, containing 1 indoor (Office [1]) and 2 outdoor (Viking Village [2], Lite [3]) scenarios. In desktop VR, rotational and translational movements are made using the mouse and up arrow key. The poses in the headset VR are collected with a standalone Oculus Quest 2, where rotational and translational movements are made by moving the head and by using the controller thumbstick. The poses in the phone-based VR are collected with Google Pixel 2 XL and Nokia 7.1 with Android 9, and rotational and translational movements are made by moving the motion-sensor-equipped phone and by tapping on the screen using one finger.

Figure 1: Open-source VR games used for the data collection: (a) Office; (b) Viking Village; (c) Lite.

B. Procedure

The data collection, conducted under COVID-19 restrictions, involved unaided and Zoom-supported remote data collection by distributing desktop and phone-based VR apps, and a small number of socially distanced in-lab experiments for headset and phone-based VR. We recorded the viewport poses of 20 participants (9 male, 11 female, age 20-48), 5 participants (2 male, 3 female, age 23-33), and 5 participants (3 male, 2 female, age 23-33) in desktop, headset, and phone-based VR, respectively. The participants were seated in front of a PC, wore the headset while standing, and held a phone in landscape mode while standing in desktop, headset, and phone-based VR, respectively. For desktop and phone-based VR, each participant explored VK, Lite, and Office for 5, 5, and 2 minutes, respectively. For headset VR, the participants only explored each game for 2 minutes to avoid simulator sickness. Considering the device computation capability and the screen refresh rate, the timestamp and viewport pose of each participant are recorded at a target frame rate of 60 Hz, 72 Hz, and 60 Hz for desktop, headset, and phone-based VR, respectively. For each frame, we record the timestamp, the x, y, z positions and the roll, pitch, and yaw Euler orientation angles. For the Euler orientation angles β, γ, α, the intrinsic rotation orders are adopted, i.e., the viewport pose is rotated α degrees around the z-axis, β degrees around the x-axis, and γ degrees around the y-axis. We randomize the initial viewport position in VR games over the whole bounding area. We fix the initial polar angle of the viewport to be 90 degree, and uniformly randomize the initial azimuth angle on [-180,180) degree.

2. Download the Dataset

The dataset can be download here.

A. The structure of the dataset

The dataset follows the hierarchical file structure shown below:

VR_Pose
└───data_Desktop
│   │
│   └───Office_Desktop_1.txt
│   └───VikingVillage_Desktop_1.txt
│   └───Lite_Desktop_1.txt
│   └───Office_Desktop_2.txt
│   └───VikingVillage_Desktop_2.txt
│   └───Lite_Desktop_2.txt
│   ...
│
└───data_Oculus
│   │
│   └───Office_Oculus_1.txt
│   └───VikingVillage_Oculus_1.txt
│   └───Lite_Oculus_1.txt
│   └───Office_Oculus_2.txt
│   └───VikingVillage_Oculus_2.txt
│   └───Lite_Oculus_2.txt
|   ...
|
└───data_Phone
...

There are 3 sub-folders corresponding to the different VR interfaces. In the subfolder of data_Desktop, there are 60 TXT files, corresponding to 20 participants, each of them experiencing 3 VR games. There are 15 TXT files in both the data_Oculus and data_Phone subfolders, corresponding to 5 participants experiencing 3 VR games. In total, there are over 5.5 hours of user data.

3. Extract the Orientation and Position Models

The OrientationModel.py and PositionModel.py are used to extract the orientation and position models for VR viewport pose, respectively. Before running the scripts in this repository, you need to download the repository and install the necessary tools and libraries on your computer, including scipy, numpy, pandas, fitter, and matplotlib.

A. Orientation model

Data processing

We convert the recorded Euler angles to polar angle θ and azimuth angle ϕ. After applying rotation matrix R, we have

From the above equation, θ is calculated as θ=sinαsinγ-cosαsinβcosγ, and ϕ is given by

where ϕ=atan((cosγsinαsinβ+cosαsinγ)/(cosβcosγ)).

After we obtain the polar and azimuth angles, we fit the polar angle, polar angle change, and azimuth angle change to a set of statistical models and mixed models (of two statistical models).

Orientation model script

The orientaion model script is provided via https://github.com/VRViewportPose/VRViewportPose/blob/main/OrientationModel.py. To obtain the orientation model, follow the procedure below:

a. Download and extract the VR viewport pose dataset.

b. Change the filePath variable in OrientationModel.py to the file location of the pose dataset.

c. You can directly run OrientationModel.py (python .\OrientationModel.py). It will automatically run the pipeline.

d. The generated EPS images named "polar_fit_our_dataset.eps", "polar_change.eps", "azimuth_change.eps", and "ACF_our_dataset.eps" will be saved in a folder. "polar_fit_our_dataset.eps", "polar_change.eps", and "azimuth_change.eps" show the distribution of the experimental data for polar angle, polar angle change, and azimuth angle change fitted by different statistical distributions, respectively. "ACF_our_dataset.eps" shows the autocorrelation function (ACF) of polar and azimuth angle samples that are Δt s apart.

B. Position model

Data processing

We apply the standard angle model proposed in [5] to extract flights from the trajectories. An example of the collected trajectory for one user in Lite and the extracted flights is shown below.

Position model script

The position model script is provided via https://github.com/VRViewportPose/VRViewportPose/blob/main/PositionModel.py. To obtain the position model, follow the procedure below:

a. Download and extract the VR viewport pose dataset.

b. Change the filePath variable in PositionModel.py to the file location of the pose dataset.

c. You can directly run PositionModel.py (python .\PositionModel.py). It will automatically run the pipeline.

d. The generated EPS images named "flight_sample.eps", "flight.eps", "pausetime_distribution.eps", and "correlation.eps" will be saved in a folder. "flight_sample.eps" shows an example of the collected trajectories and the corresponding flights. "flight.eps" and "pausetime_distribution.eps" show distributions of the flight time and the pause duration for collected samples, respectively. "correlation.eps" shows the correlation of the azimuth angle and the walking direction.

II. Visibility Similarity

4. Analytical Results

The codes for analyzing the visibility similarity can be download here.

a. You will see three files after extracting the ZIP file. Analysis_Visibility_Similarity.m sets the parameters for the orientation model, position model, and the visibility similarity model, and calculates the analytical results of visibility similarity. calculate_m_k.m calculates the k-th moment of the position displacement, and calculate_hypergeom.m is used to calculate the hypergeometric function. b. Run the Analysis_Visibility_Similarity.m. You can get the analytical results of visibility similarity.

5. Implementation of ALG-ViS

The codes for implementing the ALG-ViS can be downloaded here. Tested with Unity 2019.2.14f1 and Oculus Quest 2 with build 30.0.

a. In Unity Hub, create a new 3D Unity project. Download ZIP file and unzip in the "Assets" folder of the Unity project.

b. Install Android 9.0 'Pie' (API Level 28) or higher installed using the SDK Manager in Android Studio.

c. Navigate to File>Build Settings>Player Settings. Set 'Minimum API Level' to be Android 9.0 'Pie' (API Level 28) or higher. In 'Other Settings', make sure only 'OpenGLES3' is selected. In 'XR Settings', check 'Virtual Reality Selected' and add 'Oculus' to the 'Virtual Reality SDKs'. Rename your 'CompanyName' and 'GameName', and the Bundle Identifier string com.CompanyName.GameName will be the unique package name of your application installed on the Oculus device.

d. Copy the "pose.txt" and "visValue.txt" to the Application.persistentDataPath which points to /storage/emulated/0/Android/data/ /files, where is com.CompanyName.GameName.

e. Navigate to Window>Asset Store. Search for the virtual reality game (e.g., the 'Make Your Fantasy Game - Lite' game [3]) in the Asset Store, and select 'Buy Now' and 'Import'.

f. Make sure only the 'ALG_ViS' scene is selected in 'Scenes in Build'. Select your connected target device (Oculus Quest 2) and click 'Build and Run'.

g. The output APK package will be saved to the file path you specify, while the app will be installed on the Oculus Quest 2 device connected to your computer.

h. Disconnect the Oculus Quest 2 from the computer. After setting up a new Guardian Boundary, the vritual reality game with ALG-ViS will be automatically loaded.

Citation

Please cite the following paper in your publications if the dataset or code helps your research.

 @inproceedings{Chen22VRViewportPose,
  title={{VR} Viewport Pose Model for Quantifying and Exploiting Frame Correlations},
  author={Chen, Ying and Kwon, Hojung and Inaltekin, Hazer and Gorlatova, Maria},
  booktitle={Proc. IEEE INFOCOM},
  year={2022}
}

Acknowledgments

We thank the study's participants for their time in the data collection. The contributors of the dataset and code are Ying Chen and Maria Gorlatova. For questions on this repository or the related paper, please contact Ying Chen at yc383 [AT] duke [DOT] edu.

References

[1] Unity Asset Store. (2020) Office. https://assetstore.unity.com/packages/3d/environments/snapsprototype-office-137490

[2] Unity Technologies. (2015) Viking Village. https://assetstore.unity.com/packages/essentials/tutorialprojects/viking-village-29140

[3] Xiaolianhua Studio. (2017) Lite. https://assetstore.unity.com/packages/3d/environments/fantasy/makeyour-fantasy-game-lite-8312

[4] Oculus. (2021) Oculus Quest 2. https://www.oculus.com/quest-2/

[5] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the Levy-walk nature of human mobility,” in Proc. IEEE INFOCOM, 2008.

General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022