BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

Overview

BasicRL: easy and fundamental codes for deep reinforcement learning

BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

It is developped for beginner in DRL with the following advantages:

  • Practical: it fills the gap between the theory and practice of DRL.
  • Easy: the codes is easier than OpenAI Spinning Up in terms of achieving the same functionality.
  • Lightweight: the core codes <1,500 lines, using Pytorch ans OpenAI Gym.

The following DRL algorithms is contained in BasicRL:

  • DQN, DoubleDQN, DuelingDQN, NoisyDQN, DistributionalDQN
  • REINFORCE, VPG, PPO, DDPG, TD3 and SAC
  • PerDQN, N-step-learning DQN and Rainbow are coming

The differences compared to OpenAI Spinning Up:

  • Pros: BasicRL is currently can be used on Windows and Linux (it hasn't been extensively tested on OSX). However, Spinning Up is only supported on Linux and OSX.
  • Cons: OpenMPI is not used in BasicRL so it is slower than Spinning Up.
  • Others: BasicRL considers an agent as a class.

The differences compared to rainbow-is-all-you-need:

  • Pros: BasicRL reuse the common codes, so it is lightwight. Besides, BasicRL modifies the form of output and plot, it can use the Spinning Up's log file.
  • Others: BasicRL uses inheritance of classes, so you can see key differences between each other.

File Structure

BasicRL:

├─pg    
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py    
│  └─utils.py      
│  └─logx.py     
├─pg_cpu     
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py  
│  └─utils.py  
│  └─logx.py  
├─rainbow     
│  └─dqn/double_dqn/dueling_dqn/moisy_dqn/distributional_dqn.py  
│  └─utils.py   
│  └─logx.py   
├─requirements.txt  
└─plot.py

Code Structure

Core code

xxx.py(dqn.py...)

- agent class:
  - init
  - compute loss
  - update
  - get action
  - test agent
  - train
- main

Common code

utils.py

- expereience replay buffer: On-policy/Off-policy replay buffer
- network  

logx.py

- Logger
- EpochLogger

plot.py

- plot data
- get datasets
- get all datasets
- make plots
- main

Installation

BasicRL is tested on Anaconda virtual environment with Python3.7+

conda create -n BasicRL python=3.7
conda activate BasicRL

Clone the repository:

git clone [email protected]:RayYoh/BasicRL.git
cd BasicRL

Install required libraries:

pip install -r requirements.txt

BasicRL code library makes local experiments easy to do, and there are two ways to run them: either from the command line, or through function calls in scripts.

Experiment

After testing, Basic RL runs perfectly, but its performance has not been tested. Users can tweak the parameters and change the experimental environment to output final results for comparison. Possible outputs are shown below:

dqn pg

Contribution

BasicRL is not yet complete and I will continue to maintain it. To any interested in making BasicRL better, any contribution is warmly welcomed. If you want to contribute, please send a Pull Request.
If you are not familiar with creating a Pull Request, here are some guides:

Related Link

Citation

To cite this repository:

@misc{lei,
  author = {Lei Yao},
  title = {BasicRL: easy and fundamental codes for deep reinforcement learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/RayYoh/BasicRL}},
}
Owner
RayYoh
Research interests: Robot Learning, Robotic
RayYoh
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022