Python interface for the DIGIT tactile sensor

Overview

DIGIT-INTERFACE

License: CC BY-NC 4.0 PyPI DIGIT-logo

Python interface for the DIGIT tactile sensor.

For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org community.

Installation

The preferred way of installation is through PyPi:

pip install digit-interface

Alternatively, you can manually clone the repository and install the package using:

git clone https://github.com/facebookresearch/digit-interface.git 
cd digit-interface
pip install -r requirements.txt
python setup.py install

If you cannot access the device by serial number on your system follow adding DIGIT udev Rule

Usage

The default connection method to the DIGIT tactile sensor is through the unique device serial number. The serial number is found on the back of each DIGIT. See List all connected DIGIT's to find device serial numbers which are connected to the host.

Once you have the device serial number, reading data from the sensor should be as easy as

from digit_interface.digit import Digit
 
d = Digit("D12345") # Unique serial number
d.connect()
d.show_view()
d.disconnect()

Upon connection each DIGIT device initializes with a default stream resolution of VGA: 640x480 at 30fps

Further Usage

List all connected DIGIT's:

To list all connected DIGIT's and display sensor information:

from digit_interface.digit_handler import DigitHandler

digits = DigitHandler.list_digits()
Obtain a single frame:
from digit_interface.digit import Digit

d = Digit("D12345") # Unique serial number
d.connect()
frame = d.get_frame()
List supported stream formats:

Additional streams are supported, these streams vary in resolution and frames per second.

To list the available stream formats:

from digit_interface.digit_handler import DigitHandler

print("Supported streams: \n {}".format(DigitHandler.STREAMS))
Change resolution:
d.set_resolution(DigitHandler.STREAMS["QVGA"])
Change FPS,

Based on supported fps for each respective resolution. All streams support pre-defined resolutions which can be found in DigitHandler.STREAMS

d.set_fps(DigitHandler.STREAMS["QVGA"]["fps"]["15fps"])

Adding DIGIT udev Rule

Add your user to the plugdev group,

adduser username plugdev

Copy udev rule,

sudo cp ./udev/50-DIGIT.rules /lib/udev/rules.d/

Reload rules,

sudo udevadm control --reload
sudo udevadm trigger

Replug the DIGIT device into host.

License

This code is licensed under CC-by-NC, as found in the LICENSE file.

Citing

If you use this project in your research, please cite this paper:

@Article{Lambeta2020DIGIT,
  author  = {Lambeta, Mike and Chou, Po-Wei and Tian, Stephen and Yang, Brian and Maloon, Benjamin and Victoria Rose Most and Stroud, Dave and Santos, Raymond and Byagowi, Ahmad and Kammerer, Gregg and Jayaraman, Dinesh and Calandra, Roberto},
  title   = {{DIGIT}: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor with Application to In-Hand Manipulation},
  journal = {IEEE Robotics and Automation Letters (RA-L)},
  year    = {2020},
  volume  = {5},
  number  = {3},
  pages   = {3838--3845},
  doi     = {10.1109/LRA.2020.2977257},
}
Owner
Facebook Research
Facebook Research
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022