Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

Overview

TransZero [arXiv]

This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to AAAI 2022. We will release all codes of this work later.

Preparing Dataset and Model

We provide trained models (Google Drive) on three different datasets: CUB, SUN, AWA2 in the CZSL/GZSL setting. You can download model files as well as corresponding datasets, and organize them as follows:

.
├── saved_model
│   ├── TransZero_CUB_CZSL.pth
│   ├── TransZero_CUB_GZSL.pth
│   ├── TransZero_SUN_CZSL.pth
│   ├── TransZero_SUN_GZSL.pth
│   ├── TransZero_AWA2_CZSL.pth
│   └── TransZero_AWA2_GZSL.pth
├── data
│   ├── CUB/
│   ├── SUN/
│   └── AWA2/
└── ···

Requirements

The code implementation of TransZero mainly based on PyTorch. All of our experiments run and test in Python 3.8.8. To install all required dependencies:

$ pip install -r requirements.txt

Runing

Runing following commands and testing TransZero on different dataset:

CUB Dataset:

$ python test.py --config config/CUB_CZSL.json      # CZSL Setting
$ python test.py --config config/CUB_GZSL.json      # GZSL Setting

SUN Dataset:

$ python test.py --config config/SUN_CZSL.json      # CZSL Setting
$ python test.py --config config/SUN_GZSL.json      # GZSL Setting

AWA2 Dataset:

$ python test.py --config config/AWA2_CZSL.json     # CZSL Setting
$ python test.py --config config/AWA2_GZSL.json     # GZSL Setting

Results

Results of our released models using various evaluation protocols on three datasets, both in the conventional ZSL (CZSL) and generalized ZSL (GZSL) settings.

Dataset Acc(CZSL) U(GZSL) S(GZSL) H(GZSL)
CUB 76.8 69.3 68.3 68.8
SUN 65.6 52.6 33.4 40.8
AWA2 70.1 61.3 82.3 70.2

Note: All of above results are run on a server with an AMD Ryzen 7 5800X CPU and a NVIDIA RTX A6000 GPU.

Citation

If this work is helpful for you, please cite our paper.

@InProceedings{Chen2021TransZero,
    author    = {Chen, Shiming and Hong, Ziming and Liu, Yang and Xie, Guo-Sen and Sun, Baigui and Li, Hao and Peng, Qinmu and Lu, Ke and You, Xinge},
    title     = {TransZero: Attribute-guided Transformer for Zero-Shot Learning},
    booktitle = {Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)},
    year      = {2022}
}

References

Parts of our codes based on:

Contact

If you have any questions about codes, please don't hesitate to contact us by [email protected] or [email protected].

Owner
Shiming Chen
Interest: Generative modeling and learning, zero-shot learning, image retrieval, domain adaptation
Shiming Chen
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022