Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

Overview

TransZero [arXiv]

This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to AAAI 2022. We will release all codes of this work later.

Preparing Dataset and Model

We provide trained models (Google Drive) on three different datasets: CUB, SUN, AWA2 in the CZSL/GZSL setting. You can download model files as well as corresponding datasets, and organize them as follows:

.
├── saved_model
│   ├── TransZero_CUB_CZSL.pth
│   ├── TransZero_CUB_GZSL.pth
│   ├── TransZero_SUN_CZSL.pth
│   ├── TransZero_SUN_GZSL.pth
│   ├── TransZero_AWA2_CZSL.pth
│   └── TransZero_AWA2_GZSL.pth
├── data
│   ├── CUB/
│   ├── SUN/
│   └── AWA2/
└── ···

Requirements

The code implementation of TransZero mainly based on PyTorch. All of our experiments run and test in Python 3.8.8. To install all required dependencies:

$ pip install -r requirements.txt

Runing

Runing following commands and testing TransZero on different dataset:

CUB Dataset:

$ python test.py --config config/CUB_CZSL.json      # CZSL Setting
$ python test.py --config config/CUB_GZSL.json      # GZSL Setting

SUN Dataset:

$ python test.py --config config/SUN_CZSL.json      # CZSL Setting
$ python test.py --config config/SUN_GZSL.json      # GZSL Setting

AWA2 Dataset:

$ python test.py --config config/AWA2_CZSL.json     # CZSL Setting
$ python test.py --config config/AWA2_GZSL.json     # GZSL Setting

Results

Results of our released models using various evaluation protocols on three datasets, both in the conventional ZSL (CZSL) and generalized ZSL (GZSL) settings.

Dataset Acc(CZSL) U(GZSL) S(GZSL) H(GZSL)
CUB 76.8 69.3 68.3 68.8
SUN 65.6 52.6 33.4 40.8
AWA2 70.1 61.3 82.3 70.2

Note: All of above results are run on a server with an AMD Ryzen 7 5800X CPU and a NVIDIA RTX A6000 GPU.

Citation

If this work is helpful for you, please cite our paper.

@InProceedings{Chen2021TransZero,
    author    = {Chen, Shiming and Hong, Ziming and Liu, Yang and Xie, Guo-Sen and Sun, Baigui and Li, Hao and Peng, Qinmu and Lu, Ke and You, Xinge},
    title     = {TransZero: Attribute-guided Transformer for Zero-Shot Learning},
    booktitle = {Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)},
    year      = {2022}
}

References

Parts of our codes based on:

Contact

If you have any questions about codes, please don't hesitate to contact us by [email protected] or [email protected].

Owner
Shiming Chen
Interest: Generative modeling and learning, zero-shot learning, image retrieval, domain adaptation
Shiming Chen
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023