Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

Overview

TransZero [arXiv]

This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to AAAI 2022. We will release all codes of this work later.

Preparing Dataset and Model

We provide trained models (Google Drive) on three different datasets: CUB, SUN, AWA2 in the CZSL/GZSL setting. You can download model files as well as corresponding datasets, and organize them as follows:

.
├── saved_model
│   ├── TransZero_CUB_CZSL.pth
│   ├── TransZero_CUB_GZSL.pth
│   ├── TransZero_SUN_CZSL.pth
│   ├── TransZero_SUN_GZSL.pth
│   ├── TransZero_AWA2_CZSL.pth
│   └── TransZero_AWA2_GZSL.pth
├── data
│   ├── CUB/
│   ├── SUN/
│   └── AWA2/
└── ···

Requirements

The code implementation of TransZero mainly based on PyTorch. All of our experiments run and test in Python 3.8.8. To install all required dependencies:

$ pip install -r requirements.txt

Runing

Runing following commands and testing TransZero on different dataset:

CUB Dataset:

$ python test.py --config config/CUB_CZSL.json      # CZSL Setting
$ python test.py --config config/CUB_GZSL.json      # GZSL Setting

SUN Dataset:

$ python test.py --config config/SUN_CZSL.json      # CZSL Setting
$ python test.py --config config/SUN_GZSL.json      # GZSL Setting

AWA2 Dataset:

$ python test.py --config config/AWA2_CZSL.json     # CZSL Setting
$ python test.py --config config/AWA2_GZSL.json     # GZSL Setting

Results

Results of our released models using various evaluation protocols on three datasets, both in the conventional ZSL (CZSL) and generalized ZSL (GZSL) settings.

Dataset Acc(CZSL) U(GZSL) S(GZSL) H(GZSL)
CUB 76.8 69.3 68.3 68.8
SUN 65.6 52.6 33.4 40.8
AWA2 70.1 61.3 82.3 70.2

Note: All of above results are run on a server with an AMD Ryzen 7 5800X CPU and a NVIDIA RTX A6000 GPU.

Citation

If this work is helpful for you, please cite our paper.

@InProceedings{Chen2021TransZero,
    author    = {Chen, Shiming and Hong, Ziming and Liu, Yang and Xie, Guo-Sen and Sun, Baigui and Li, Hao and Peng, Qinmu and Lu, Ke and You, Xinge},
    title     = {TransZero: Attribute-guided Transformer for Zero-Shot Learning},
    booktitle = {Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)},
    year      = {2022}
}

References

Parts of our codes based on:

Contact

If you have any questions about codes, please don't hesitate to contact us by [email protected] or [email protected].

Owner
Shiming Chen
Interest: Generative modeling and learning, zero-shot learning, image retrieval, domain adaptation
Shiming Chen
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022