The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

Related tags

Deep LearningMMC
Overview

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities

This is the official code for NeurIPS 2021 Machine Learning for Autonomous Driving Workshop Paper, "Does Thermal data make the detection systems more reliable?" by Shruthi Gowda, Elahe Arani and Bahram Zonooz.

Methodology

Architecture

Detection Head : SSD
Detection Backbone : Resnet (CNN-based) or DEiT (Transformer-based)

MMC framework

image info

MMC framework has multiple versions

KD.ENABLE: True
KD.ENABLE_DML: True

1. MMC (Base Version) : Det Loss + DML Loss 
    KD.DISTILL_TYPE : KL, AT, L2, L2B
    KL (KL divergence), AT (Attention loss), L2 (L2 norm at head layer), L2B (L2 norm of backbone features)
   
2. MMC v1 (Reconstruction) : Det Loss + DML Loss + Recon Loss
    KD.AUX_RECON = True
    KD.AUX_RECON_MODE = "normal"

3. MMC v2 (Cross Reconstruction) : Det Loss + DML Loss + Cross Recon Loss
    KD.AUX_RECON = True
    KD.AUX_RECON_MODE = "cross"

We also try other techniques for comparison image info

Fusion
1. Input Fusion
    KD.CONCAT_INPUT
2. Feature Fusion
    KD.CONCAT_FEATURES
    CONCAT_LAYERS

Installation

You can prepare the environment using:

pip install -r requirements.txt

You can build the project using the following script:

./build {conda_env_name}

Datasets

Two datasets "FLIR" and "KAIST" are used in this repo

FLIR : https://www.flir.eu/oem/adas/adas-dataset-form/
KAIST : https://soonminhwang.github.io/rgbt-ped-detection/

Running

Train

There are 2 networks, one receiving RGB images and one receiving thermal images. Both require different config files.

python train.py --config-file <thermal-config-file> --teacher-config-file <rgb-config-file>

Test

For evaluation only one network is used - the first network (RGB or Teacher network)

python test.py --config-file <config-file> --ckpt <model_final.pth> 

Model Checkpoints

Cite Our Work

License

This project is licensed under the terms of the MIT license.

Owner
NeurAI
Located at the brain port of Netherlands, the Advanced Research Lab is an innovation center within the NavInfo group. We have a diverse energetic team of resear
NeurAI
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022