The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

Related tags

Deep LearningMMC
Overview

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities

This is the official code for NeurIPS 2021 Machine Learning for Autonomous Driving Workshop Paper, "Does Thermal data make the detection systems more reliable?" by Shruthi Gowda, Elahe Arani and Bahram Zonooz.

Methodology

Architecture

Detection Head : SSD
Detection Backbone : Resnet (CNN-based) or DEiT (Transformer-based)

MMC framework

image info

MMC framework has multiple versions

KD.ENABLE: True
KD.ENABLE_DML: True

1. MMC (Base Version) : Det Loss + DML Loss 
    KD.DISTILL_TYPE : KL, AT, L2, L2B
    KL (KL divergence), AT (Attention loss), L2 (L2 norm at head layer), L2B (L2 norm of backbone features)
   
2. MMC v1 (Reconstruction) : Det Loss + DML Loss + Recon Loss
    KD.AUX_RECON = True
    KD.AUX_RECON_MODE = "normal"

3. MMC v2 (Cross Reconstruction) : Det Loss + DML Loss + Cross Recon Loss
    KD.AUX_RECON = True
    KD.AUX_RECON_MODE = "cross"

We also try other techniques for comparison image info

Fusion
1. Input Fusion
    KD.CONCAT_INPUT
2. Feature Fusion
    KD.CONCAT_FEATURES
    CONCAT_LAYERS

Installation

You can prepare the environment using:

pip install -r requirements.txt

You can build the project using the following script:

./build {conda_env_name}

Datasets

Two datasets "FLIR" and "KAIST" are used in this repo

FLIR : https://www.flir.eu/oem/adas/adas-dataset-form/
KAIST : https://soonminhwang.github.io/rgbt-ped-detection/

Running

Train

There are 2 networks, one receiving RGB images and one receiving thermal images. Both require different config files.

python train.py --config-file <thermal-config-file> --teacher-config-file <rgb-config-file>

Test

For evaluation only one network is used - the first network (RGB or Teacher network)

python test.py --config-file <config-file> --ckpt <model_final.pth> 

Model Checkpoints

Cite Our Work

License

This project is licensed under the terms of the MIT license.

Owner
NeurAI
Located at the brain port of Netherlands, the Advanced Research Lab is an innovation center within the NavInfo group. We have a diverse energetic team of resear
NeurAI
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023