A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

Overview

pytorch-accelerated

pytorch-accelerated is a lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop - encapsulated in a single Trainer object - which is flexible enough to handle the majority of use cases, and capable of utilizing different hardware options with no code changes required.

pytorch-accelerated offers a streamlined feature set, and places a huge emphasis on simplicity and transparency, to enable users to understand exactly what is going on under the hood, but without having to write and maintain the boilerplate themselves!

The key features are:

  • A simple and contained, but easily customisable, training loop, which should work out of the box in straightforward cases; behaviour can be customised using inheritance and/or callbacks.
  • Handles device placement, mixed-precision, DeepSpeed integration, multi-GPU and distributed training with no code changes.
  • Uses pure PyTorch components, with no additional modifications or wrappers, and easily interoperates with other popular libraries such as timm, transformers and torchmetrics.
  • A small, streamlined API ensures that there is a minimal learning curve for existing PyTorch users.

Significant effort has been taken to ensure that every part of the library - both internal and external components - is as clear and simple as possible, making it easy to customise, debug and understand exactly what is going on behind the scenes at each step; most of the behaviour of the trainer is contained in a single class! In the spirit of Python, nothing is hidden and everything is accessible.

pytorch-accelerated is proudly and transparently built on top of Hugging Face Accelerate, which is responsible for the movement of data between devices and launching of training configurations. When customizing the trainer, or launching training, users are encouraged to consult the Accelerate documentation to understand all available options; Accelerate provides convenient functions for operations such gathering tensors and gradient clipping, usage of which can be seen in the pytorch-accelerated examples folder!

To learn more about the motivations behind this library, along with a detailed getting started guide, check out this blog post.

Installation

pytorch-accelerated can be installed from pip using the following command:

pip install pytorch-accelerated

To make the package as slim as possible, the packages required to run the examples are not included by default. To include these packages, you can use the following command:

pip install pytorch-accelerated[examples]

Quickstart

To get started, simply import and use the pytorch-accelerated Trainer ,as demonstrated in the following snippet, and then launch training using the accelerate CLI described below.

# examples/train_mnist.py
import os

from torch import nn, optim
from torch.utils.data import random_split
from torchvision import transforms
from torchvision.datasets import MNIST

from pytorch_accelerated import Trainer

class MNISTModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.main = nn.Sequential(
            nn.Linear(in_features=784, out_features=128),
            nn.ReLU(),
            nn.Linear(in_features=128, out_features=64),
            nn.ReLU(),
            nn.Linear(in_features=64, out_features=10),
        )

    def forward(self, input):
        return self.main(input.view(input.shape[0], -1))

def main():
    dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
    train_dataset, validation_dataset, test_dataset = random_split(dataset, [50000, 5000, 5000])
    model = MNISTModel()
    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    loss_func = nn.CrossEntropyLoss()

    trainer = Trainer(
            model,
            loss_func=loss_func,
            optimizer=optimizer,
    )

    trainer.train(
        train_dataset=train_dataset,
        eval_dataset=validation_dataset,
        num_epochs=8,
        per_device_batch_size=32,
    )

    trainer.evaluate(
        dataset=test_dataset,
        per_device_batch_size=64,
    )
    
if __name__ == "__main__":
    main()

To launch training using the accelerate CLI , on your machine(s), run:

accelerate config --config_file accelerate_config.yaml

and answer the questions asked. This will generate a config file that will be used to properly set the default options when doing

accelerate launch --config_file accelerate_config.yaml train.py [--training-args]

Note: Using the accelerate CLI is completely optional, training can also be launched in the usual way using:

python train.py / python -m torch.distributed ...

depending on your infrastructure configuration, for users who would like to maintain a more fine-grained control over the launch command.

More complex training examples can be seen in the examples folder here.

Alternatively, if you would rather undertsand the core concepts first, this can be found in the documentation.

Usage

Who is pytorch-accelerated aimed at?

  • Users that are familiar with PyTorch but would like to avoid having to write the common training loop boilerplate to focus on the interesting parts of the training loop.
  • Users who like, and are comfortable with, selecting and creating their own models, loss functions, optimizers and datasets.
  • Users who value a simple and streamlined feature set, where the behaviour is easy to debug, understand, and reason about!

When shouldn't I use pytorch-accelerated?

  • If you are looking for an end-to-end solution, encompassing everything from loading data to inference, which helps you to select a model, optimizer or loss function, you would probably be better suited to fastai. pytorch-accelerated focuses only on the training process, with all other concerns being left to the responsibility of the user.
  • If you would like to write the entire training loop yourself, just without all of the device management headaches, you would probably be best suited to using Accelerate directly! Whilst it is possible to customize every part of the Trainer, the training loop is fundamentally broken up into a number of different methods that you would have to override. But, before you go, is writing those for loops really important enough to warrant starting from scratch again 😉 .
  • If you are working on a custom, highly complex, use case which does not fit the patterns of usual training loops and want to squeeze out every last bit of performance on your chosen hardware, you are probably best off sticking with vanilla PyTorch; any high-level API becomes an overhead in highly specialized cases!

Acknowledgements

Many aspects behind the design and features of pytorch-accelerated were greatly inspired by a number of excellent libraries and frameworks such as fastai, timm, PyTorch-lightning and Hugging Face Accelerate. Each of these tools have made an enormous impact on both this library and the machine learning community, and their influence can not be stated enough!

pytorch-accelerated has taken only inspiration from these tools, and all of the functionality contained has been implemented from scratch in a way that benefits this library. The only exceptions to this are some of the scripts in the examples folder in which existing resources were taken and modified in order to showcase the features of pytorch-accelerated; these cases are clearly marked, with acknowledgement being given to the original authors.

Comments
  • Do we need to set mixed-precision explicitly or is it handled if tensor cores available?

    Do we need to set mixed-precision explicitly or is it handled if tensor cores available?

    I following your awesome guide on timm: https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055.

    I am running training on an A100-based VM which should support mixed-precision training. Does Trainer from PyTorch Accelerated take care of that automatically?

    opened by sayakpaul 6
  • ERROR: No matching distribution found for pytorch-accelerated

    ERROR: No matching distribution found for pytorch-accelerated

    I'm just trying to install the package using the pip command and I get the following errors:

    ERROR: Could not find a version that satisfies the requirement pytorch-accelerated (from versions: none)
    ERROR: No matching distribution found for pytorch-accelerated
    

    Am I missing something?

    P.S. I've already installed the requirements including accelerate and tqdm

    opened by phosseini 4
  • Can pytorch-accelerated be used with pytorch-lightning callbacks and loggers?

    Can pytorch-accelerated be used with pytorch-lightning callbacks and loggers?

    I'm interested in this package for its support of methods like EMA that don't seem to have made it into Lightning yet, but don't want to lost my current experiment tracking setup etc.

    opened by GeorgePearse 3
  • Do you know about Lightning Lite ?

    Do you know about Lightning Lite ?

    Hey @Chris-hughes10,

    Awesome work there !

    Did you know about Lightning Lite in PyTorch Lightning ? Here are the docs : https://pytorch-lightning.readthedocs.io/en/latest/starter/lightning_lite.html

    lightning_lite

    opened by tchaton 1
  • Refactor loss tracking

    Refactor loss tracking

    • Create private methods in trainer to handle loss tracking, removing duplication
    • Move loss gathering to the end of each epoch, as opposed to after each batch
    • Add tests for loss tracker
    opened by Chris-hughes10 0
  • Add limit batches context manager

    Add limit batches context manager

    Add a context manager which can be used to limit the number of training and evaluation batches used without having to manually add the callback. This is done by setting an environment variable.

    opened by Chris-hughes10 0
  • Refactor batch unpacking

    Refactor batch unpacking

    • Refactor batch unpacking to explicitly assign the first two items as xb and yb. This will enable more flexibility in what is returned by a dataloader
    opened by Chris-hughes10 0
  • Enables distributed evaluation on uneven inputs

    Enables distributed evaluation on uneven inputs

    Adds functionality to enable distributed evaluation on uneven samples. Previously, this was handled by adding extra samples to the dataset, this behaviour is now disabled by default.

    opened by Chris-hughes10 0
Releases(v0.1.40)
  • v0.1.40(Nov 17, 2022)

    What's Changed

    • Add option to execute callbacks during ModelEma evaluation loop by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/41

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.39...v0.1.40

    Source code(tar.gz)
    Source code(zip)
  • v0.1.39(Oct 14, 2022)

    What's Changed

    • Improve gathering to automatically pad tensors across processes
    • Add get_model method in Trainer by @bepuca in https://github.com/Chris-hughes10/pytorch-accelerated/pull/39

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.38...v0.1.39

    Source code(tar.gz)
    Source code(zip)
  • v0.1.38(Sep 7, 2022)

    What's Changed

    • update worker init function by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/37
    • Separate out decay function in model EMA for easier override by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/38

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.37...v0.1.38

    Source code(tar.gz)
    Source code(zip)
  • v0.1.37(Aug 24, 2022)

  • v0.1.36(Aug 22, 2022)

    What's Changed

    • Improve logging for SaveBestModelCallback by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/35
    • Add sync batchnorm callback by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/34
    • Add Ema model callback by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/36

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.35...v0.1.36

    Source code(tar.gz)
    Source code(zip)
  • v0.1.35(Jul 9, 2022)

    What's Changed

    • Update Custom sampler handling by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/33

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.34...v0.1.35

    Source code(tar.gz)
    Source code(zip)
  • v0.1.34(Jun 29, 2022)

  • v0.1.33(Jun 29, 2022)

  • v0.1.32(Jun 29, 2022)

    What's Changed

    • Add limit batches context manager by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/32

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.31...v0.1.32

    Source code(tar.gz)
    Source code(zip)
  • v0.1.31(Jun 22, 2022)

  • v0.1.30(Jun 22, 2022)

    What's Changed

    • Add Limit batches callback (beta version) by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/31

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.29...v0.1.30

    Source code(tar.gz)
    Source code(zip)
  • v0.1.29(Jun 17, 2022)

    What's Changed

    • Improve grad accumulation by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/30 Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.28...v0.1.29
    Source code(tar.gz)
    Source code(zip)
  • v0.1.28(May 31, 2022)

    What's Changed

    • Add local process first decorator by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/27
    • Update fp16 arg to mixed precision by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/28
    • Update accelerate version to 0.8.0 by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/29

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.27...v0.1.28

    Source code(tar.gz)
    Source code(zip)
  • v0.1.27(May 24, 2022)

  • v0.1.26(Apr 28, 2022)

    What's Changed

    • Add process decorators for distributed training by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/25
    • Update accelerate version by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/26

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.25...v0.1.26

    Source code(tar.gz)
    Source code(zip)
  • v0.1.25(Apr 25, 2022)

    What's Changed

    • Add handling for multi boolean tensors by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/23
    • Refactor batch unpacking by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/24

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.24...v0.1.25

    Source code(tar.gz)
    Source code(zip)
  • v0.1.24(Apr 20, 2022)

  • v0.1.23(Apr 17, 2022)

    What's Changed

    • Add schedulers by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/22
    • Add a better way of getting default callbacks
    • Update project license to Apache-2.0

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.22...v0.1.23

    Source code(tar.gz)
    Source code(zip)
  • v0.1.22(Feb 23, 2022)

    What's Changed

    • Add operations to placeholders by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/17
    • Add clarification for LR schedulers in the docs by @bepuca in https://github.com/Chris-hughes10/pytorch-accelerated/pull/16
    • Add specialised trainer to work with timm schedulers

    New Contributors

    • @bepuca made their first contribution in https://github.com/Chris-hughes10/pytorch-accelerated/pull/16

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.21...v0.1.22

    Source code(tar.gz)
    Source code(zip)
  • v0.1.21(Jan 27, 2022)

  • v0.1.20(Jan 19, 2022)

    What's Changed

    • Added an example to the docs for a callback that saves predictions during evaluation by @alexhock10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/13
    • Create run config for standalone evaluation runs by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/14

    New Contributors

    • @alexhock10 made their first contribution in https://github.com/Chris-hughes10/pytorch-accelerated/pull/13

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.9...v0.1.20

    Source code(tar.gz)
    Source code(zip)
  • v0.1.9(Dec 31, 2021)

    What's Changed

    • Freezing exploration by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/11
    • Add gather method by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/12

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.8...v0.1.9

    Source code(tar.gz)
    Source code(zip)
  • v0.1.8(Dec 11, 2021)

    What's Changed

    • Changes to facilitate AzureML example by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/10

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.7...v0.1.8

    Source code(tar.gz)
    Source code(zip)
  • v0.1.7(Nov 30, 2021)

    What's Changed

    • Update early stopping by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/9
    • Remove torch dependency (covered by accelerate)

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.6...v0.1.7

    Source code(tar.gz)
    Source code(zip)
  • v0.1.6(Nov 26, 2021)

  • v0.1.5(Nov 24, 2021)

    What's Changed

    • Add intersphinx to docs by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/7
    • Update device handling by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/8

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.4...v0.1.5

    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Nov 17, 2021)

    Update the package documentation

    What's Changed

    • Get docs to build properly by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/5
    • Get docs to build properly by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/6

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.3...v0.1.4

    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Nov 13, 2021)

    Initial release

    What's Changed

    • Add gradient clipping to trainer by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/2
    • Prepare pypi workflow by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/3

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/commits/v0.1.0

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.0...v0.1.2

    What's Changed

    • Add sphinx docs by @Chris-hughes10 in https://github.com/Chris-hughes10/pytorch-accelerated/pull/4

    Full Changelog: https://github.com/Chris-hughes10/pytorch-accelerated/compare/v0.1.2...v0.1.3

    Source code(tar.gz)
    Source code(zip)
Owner
Chris Hughes
Chris Hughes
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022