Deep Distributed Control of Port-Hamiltonian Systems

Overview

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH)

This repository is associated to the paper [1] and it contains:

  1. The full paper manuscript.
  2. The code to reproduce numerical experiments.

Summary

By embracing the compositional properties of port-Hamiltonian (pH) systems, we characterize deep Hamiltonian control policies with built-in closed-loop stability guarantees — irrespective of the interconnection topology and the chosen neural network parameters. Furthermore, our setup enables leveraging recent results on well-behaved neural ODEs to prevent the phenomenon of vanishing gradients by design [2]. The numerical experiments described in the report and available in this repository corroborate the dependability of the proposed DeepDisCoPH architecture, while matching the performance of general neural network policies.

Report

The report as well as the corresponding Appendices can be found in the docs folder.

Installation of DeepDisCoPH

The following lines indicates how to install the Deep Distributed Control for Port-Hamiltonian Systems (DeepDisCoPH) package.

git clone https://github.com/DecodEPFL/DeepDisCoPH.git

cd DeepDisCoPH

python setup.py install

Basic usage

To train distributed controllers for the 12 robots in the xy-plane:

./run.py --model [MODEL]

where available values for MODEL are distributed_HDNN, distributed_HDNN_TI and distributed_MLP.

To plot the norms of the backward sensitivity matrices (BSMs) when training a distributed H-DNN as the previous example, run:

./bsm.py --layer [LAYER]

where available values for LAYER are 1,2,...,100. If LAYER=-1, then it is set to N. The LAYER parameter indicates the layer number at which we consider the loss function is evaluated.

Examples: formation control with collision avoidance

The following gifs show the trajectories of the robots before and after the training of a distributed H-DNN controller. The goal is to reach the target positions within T = 5 seconds while avoiding collisions.

robot_trajectories_before_training robot_trajectories_after_training_a_distributed_HDNN_controller

Training performed for t in [0,5]. Trajectories shown for t in [0,6], highlighting that robots stay close to the desired position when the time horizon is extended (grey background).

Early stopping of the training

We verify that DeepDisCoPH controllers ensure closed-loop stability by design even during exploration. We train the DeepDisCoPH controller for 25%, 50% and 75% of the total number of iterations and report the results in the following gifs.

robot_trajectories_25_training robot_trajectories_50_training robot_trajectories_75_training

Training performed for t in [0,5]. Trajectories shown for t in [0,15]. The extended horizon, i.e. when t in [5,15], is shown with grey background. Partially trained distributed controllers exhibit suboptimal behavior, but never compromise closed-loop stability.

References

[1] Luca Furieri, Clara L. Galimberti, Muhammad Zakwan and Giancarlo Ferrrari Trecate. "Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach", under review.

[2] Clara L. Galimberti, Luca Furieri, Liang Xu and Giancarlo Ferrrari Trecate. "Hamiltonian Deep Neural Networks Guaranteeing Non-vanishing Gradients by Design," arXiv:2105.13205, 2021.

Owner
Dependable Control and Decision group - EPFL
Dependable Control and Decision group - EPFL
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022