Collection of Docker images for ML/DL and video processing projects

Overview

dokai-logo

Build and push Generic badge

Collection of Docker images for ML/DL and video processing projects.

Overview of images

Three types of images differ by tag postfix:

  • base: Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support
  • pytorch: PyTorch (1.10.0-rc1), torchvision (0.10.1), torchaudio (0.9.1) and torch based libraries
  • tensor-stream: Tensor Stream for real-time video streams decoding on GPU

Example

Pull an image

docker pull ghcr.io/osai-ai/dokai:21.09-pytorch

Docker Hub mirror

docker pull osaiai/dokai:21.09-pytorch

Check available GPUs inside container

docker run --rm \
    --gpus=all \
    ghcr.io/osai-ai/dokai:21.09-pytorch \
    nvidia-smi

Example of using dokai image for DL pipeline you can find here.

Versions

base

dokai:20.09-base

ghcr.io/osai-ai/dokai:20.09-base

FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.6.9)

pip==20.2.3
setuptools==50.3.0
packaging==20.4
numpy==1.19.2
opencv-python==4.4.0.42
scipy==1.5.2
matplotlib==3.3.2
pandas==1.1.2
notebook==6.1.4
scikit-learn==0.23.2
scikit-image==0.17.2
albumentations==0.4.6
Cython==0.29.21
Pillow==7.2.0
trafaret-config==2.0.2
pyzmq==19.0.2
librosa==0.8.0
psutil==5.7.2
dataclasses==0.7

dokai:20.10-base

ghcr.io/osai-ai/dokai:20.10-base

FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.6.9)

pip==20.2.4
setuptools==50.3.2
packaging==20.4
numpy==1.19.2
opencv-python==4.4.0.44
scipy==1.5.3
matplotlib==3.3.2
pandas==1.1.3
notebook==6.1.4
scikit-learn==0.23.2
scikit-image==0.17.2
albumentations==0.5.0
Cython==0.29.21
Pillow==8.0.0
trafaret-config==2.0.2
pyzmq==19.0.2
librosa==0.8.0
psutil==5.7.2
dataclasses==0.7
pydantic==1.6.1
requests==2.24.0

dokai:20.12-base

ghcr.io/osai-ai/dokai:20.12-base

CUDA (11.1), cuDNN (8.0.5)
FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.8.5)

pip==20.3.3
setuptools==51.0.0
packaging==20.8
numpy==1.19.4
opencv-python==4.4.0.46
scipy==1.5.4
matplotlib==3.3.3
pandas==1.1.5
notebook==6.1.5
scikit-learn==0.23.2
scikit-image==0.18.0
albumentations==0.5.2
Cython==0.29.21
Pillow==8.0.1
trafaret-config==2.0.2
pyzmq==20.0.0
librosa==0.8.0
psutil==5.8.0
pydantic==1.7.3
requests==2.25.1

dokai:21.01-base

ghcr.io/osai-ai/dokai:21.01-base

CUDA (11.1.1), cuDNN (8.0.5)
FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==20.3.3
setuptools==51.3.3
packaging==20.8
numpy==1.19.5
opencv-python==4.5.1.48
scipy==1.6.0
matplotlib==3.3.3
pandas==1.2.0
notebook==6.2.0
scikit-learn==0.24.1
scikit-image==0.18.1
albumentations==0.5.2
Cython==0.29.21
Pillow==8.1.0
trafaret-config==2.0.2
pyzmq==21.0.1
librosa==0.8.0
psutil==5.8.0
pydantic==1.7.3
requests==2.25.1

dokai:21.02-base

ghcr.io/osai-ai/dokai:21.02-base

CUDA (11.2.1), cuDNN (8.1.0)
FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.0.1
setuptools==53.0.0
packaging==20.9
numpy==1.20.1
opencv-python==4.5.1.48
scipy==1.6.1
matplotlib==3.3.4
pandas==1.2.2
scikit-learn==0.24.1
scikit-image==0.18.1
Pillow==8.1.0
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.22
numba==0.52.0
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.7.3
PyYAML==5.4.1
notebook==6.2.0
ipywidgets==7.6.3
tqdm==4.57.0
pytest==6.2.2
mypy==0.812
flake8==3.8.4

dokai:21.03-base

ghcr.io/osai-ai/dokai:21.03-base

CUDA (11.2.2), cuDNN (8.1.1)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.0.1
setuptools==54.2.0
packaging==20.9
numpy==1.20.1
opencv-python==4.5.1.48
scipy==1.6.1
matplotlib==3.3.4
pandas==1.2.3
scikit-learn==0.24.1
scikit-image==0.18.1
Pillow==8.1.2
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.22
numba==0.53.0
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.1
PyYAML==5.4.1
notebook==6.3.0
ipywidgets==7.6.3
tqdm==4.59.0
pytest==6.2.2
mypy==0.812
flake8==3.9.0

dokai:21.05-base

ghcr.io/osai-ai/dokai:21.05-base

CUDA (11.3), cuDNN (8.2.0)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.1.1
setuptools==56.2.0
packaging==20.9
numpy==1.20.3
opencv-python==4.5.2.52
scipy==1.6.3
matplotlib==3.4.2
pandas==1.2.4
scikit-learn==0.24.2
scikit-image==0.18.1
Pillow==8.2.0
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.23
numba==0.53.1
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.1
PyYAML==5.4.1
notebook==6.3.0
ipywidgets==7.6.3
tqdm==4.60.0
pytest==6.2.4
mypy==0.812
flake8==3.9.2

dokai:21.07-base

ghcr.io/osai-ai/dokai:21.07-base

CUDA (11.3.1), cuDNN (8.2.0)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.10)

pip==21.1.3
setuptools==57.0.0
packaging==20.9
numpy==1.21.0
opencv-python==4.5.2.54
scipy==1.7.0
matplotlib==3.4.2
pandas==1.2.5
scikit-learn==0.24.2
scikit-image==0.18.2
Pillow==8.2.0
librosa==0.8.1
albumentations==1.0.0
pyzmq==22.1.0
Cython==0.29.23
numba==0.53.1
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.0
ipywidgets==7.6.3
tqdm==4.61.1
pytest==6.2.4
mypy==0.910
flake8==3.9.2

dokai:21.08-base

ghcr.io/osai-ai/dokai:21.08-base

CUDA (11.4.1), cuDNN (8.2.2)
FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
Python (3.8.10)

pip==21.2.3
setuptools==57.4.0
packaging==21.0
numpy==1.21.1
opencv-python==4.5.3.56
scipy==1.7.1
matplotlib==3.4.2
pandas==1.3.1
scikit-learn==0.24.2
scikit-image==0.18.2
Pillow==8.3.1
librosa==0.8.1
albumentations==1.0.3
pyzmq==22.2.1
Cython==0.29.24
numba==0.53.1
requests==2.26.0
psutil==5.8.0
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.3
ipywidgets==7.6.3
tqdm==4.62.0
pytest==6.2.4
mypy==0.910
flake8==3.9.2

dokai:21.09-base

ghcr.io/osai-ai/dokai:21.09-base

CUDA (11.4.2), cuDNN (8.2.4)
FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
Python (3.8.10)

pip==21.2.4
setuptools==58.1.0
packaging==21.0
numpy==1.21.2
opencv-python==4.5.3.56
scipy==1.7.1
matplotlib==3.4.3
pandas==1.3.3
scikit-learn==1.0
scikit-image==0.18.3
Pillow==8.3.2
librosa==0.8.1
albumentations==1.0.3
pyzmq==22.3.0
Cython==0.29.24
numba==0.53.1
requests==2.26.0
psutil==5.8.0
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.4
ipywidgets==7.6.5
tqdm==4.62.3
pytest==6.2.5
mypy==0.910
flake8==3.9.2

pytorch

dokai:20.09-pytorch

ghcr.io/osai-ai/dokai:20.09-pytorch

additionally to dokai:20.09-base:

torch==1.6.0
torchvision==0.7.0
pytorch-argus==0.1.2
timm==0.2.1
apex (master)

dokai:20.10-pytorch

ghcr.io/osai-ai/dokai:20.10-pytorch

additionally to dokai:20.10-base:

torch==1.6.0
torchvision==0.7.0
pytorch-argus==0.1.2
timm==0.2.1
apex (master)

dokai:20.12-pytorch

ghcr.io/osai-ai/dokai:20.12-pytorch

additionally to dokai:20.12-base:

torch==1.7.1 (source, v1.7.1 tag)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.3.2
kornia==0.4.1
apex (source, master branch)

dokai:21.01-pytorch

ghcr.io/osai-ai/dokai:21.01-pytorch

additionally to dokai:21.01-base:

torch==1.8.0a0+4aea007 (source, master branch)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.3.4
kornia==0.4.1
apex (source, master branch)

dokai:21.02-pytorch

ghcr.io/osai-ai/dokai:21.02-pytorch

additionally to dokai:21.02-base:

torch==1.9.0a0+c2b9283 (source, master branch)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.4.4 (source, master branch)
kornia==0.4.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.0
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.03-pytorch

ghcr.io/osai-ai/dokai:21.03-pytorch

additionally to dokai:21.03-base:

torch==1.8.0 (source, v1.8.0 tag)
torchvision==0.9.0 (source, v0.9.0 tag)
torchaudio==0.8.0 (source, v0.8.0 tag)
pytorch-argus==0.2.1
timm==0.4.5
kornia==0.5.0
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.0
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.05-pytorch

ghcr.io/osai-ai/dokai:21.05-pytorch

additionally to dokai:21.05-base:

torch==1.8.1 (source, v1.8.1 tag)
torchvision==0.9.1 (source, v0.9.1 tag)
torchaudio==0.8.1 (source, v0.8.1 tag)
pytorch-argus==0.2.1
timm==0.4.8 (source, master branch)
kornia==0.5.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.07-pytorch

ghcr.io/osai-ai/dokai:21.07-pytorch

additionally to dokai:21.07-base:

torch==1.9.0 (source, v1.9.0 tag)
torchvision==0.10.0 (source, v0.10.0 tag)
torchaudio==0.9.0 (source, v0.9.0 tag)
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.1.3
kornia==0.5.5
apex (source, master branch)

dokai:21.08-pytorch

ghcr.io/osai-ai/dokai:21.08-pytorch

additionally to dokai:21.08-base:

MAGMA (2.6.1)

torch==1.10.0a0+git5b8389e (source, master branch)
torchvision==0.10.0 (source, v0.10.0 tag)
torchaudio==0.9.0 (source, v0.9.0 tag)
pytorch-ignite==0.4.6
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.2.0
kornia==0.5.8
apex (source, master branch)

dokai:21.09-pytorch

ghcr.io/osai-ai/dokai:21.09-pytorch

additionally to dokai:21.09-base:

MAGMA (2.6.1)

torch==1.10.0-rc1 (source, v1.10.0-rc1 tag)
torchvision==0.10.1 (source, v0.10.1 tag)
torchaudio==0.9.1 (source, v0.9.1 tag)
pytorch-ignite==0.4.6
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.2.0
kornia==0.5.11
apex (source, master branch)

tensor-stream

dokai:20.09-tensor-stream

ghcr.io/osai-ai/dokai:20.09-tensor-stream

additionally to dokai:20.09-pytorch:

tensor-stream==0.4.6 (dev)

dokai:20.10-tensor-stream

ghcr.io/osai-ai/dokai:20.10-tensor-stream

additionally to dokai:20.10-pytorch:

tensor-stream==0.4.6 (dev)

dokai:20.12-tensor-stream

ghcr.io/osai-ai/dokai:20.12-tensor-stream

additionally to dokai:20.12-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.01-tensor-stream

ghcr.io/osai-ai/dokai:21.01-tensor-stream

additionally to dokai:21.01-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.02-tensor-stream

ghcr.io/osai-ai/dokai:21.02-tensor-stream

additionally to dokai:21.02-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.03-tensor-stream

ghcr.io/osai-ai/dokai:21.03-tensor-stream

additionally to dokai:21.03-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.05-tensor-stream

ghcr.io/osai-ai/dokai:21.05-tensor-stream

additionally to dokai:21.05-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.07-tensor-stream

ghcr.io/osai-ai/dokai:21.07-tensor-stream

additionally to dokai:21.07-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.08-tensor-stream

ghcr.io/osai-ai/dokai:21.08-tensor-stream

additionally to dokai:21.08-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.09-tensor-stream

ghcr.io/osai-ai/dokai:21.09-tensor-stream

additionally to dokai:21.09-pytorch:

tensor-stream==0.4.6 (source, dev branch)

You might also like...
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Search Youtube Video and Get Video info
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

 MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

Comments
  • Does not work `torchaudio.transforms.MelSpectrogram`, no MKL

    Does not work `torchaudio.transforms.MelSpectrogram`, no MKL

    I used docker pulled from ghcr.io/osai-ai/dokai:21.05-pytorch.

    The following code gives an error:

    python -c 'import torchaudio; import torch; a = torch.randn(2, 4663744); torchaudio.transforms.MelSpectrogram(44100)(a)'

    /usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/functional/functional.py:357: UserWarning: At least one mel filterbank has all zero values. The value for `n_mels` (128) may be set too high. Or, the value for `n_freqs` (201) may be set too low.
      warnings.warn(
    Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/transforms.py", line 480, in forward
        specgram = self.spectrogram(waveform)
      File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/transforms.py", line 96, in forward
        return F.spectrogram(
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/functional/functional.py", line 91, in spectrogram
        spec_f = torch.stft(
      File "/usr/local/lib/python3.8/dist-packages/torch/functional.py", line 580, in stft
        return _VF.stft(input, n_fft, hop_length, win_length, window,  # type: ignore
    RuntimeError: fft: ATen not compiled with MKL support
    

    and this check python -c 'import torch; a = torch.randn(10); print(a.to_mkldnn().layout)' works correctly.

    opened by Ayagoz 2
  • Expired link to nv-codec-headers repo

    Expired link to nv-codec-headers repo

    Hi, git.videolan.org is experiencing some issues again, it looks like the certificate for the domain is expired or something like that (but it was alive just a week ago!). Also, they are migrating to code.videolan.org, however nv-codec-headers is not there yet.

    The current link does not work: https://github.com/osai-ai/dokai/blob/6f99608b70881de43740bc84c34f42249f4f65aa/docker/Dockerfile.base#L43

    Temporary workaround: https://github.com/FFmpeg/nv-codec-headers.git

    opened by NikolasEnt 1
Releases(v22.11)
  • v22.11(Nov 22, 2022)

    Updates

    • TensorRT 8.5.1
    • torch 1.14.0a0+git71fe069 (source, close to v1.13.0 after commit "ada lovelace (arch 8.9) support #87436")
    • torchvision 0.14.0 (from source, v0.14.0 tag)
    • torchaudio 0.13.0 (from source, v0.13.0 tag)
    • Update other PyPI packages
    • Ada Lovelace architecture support
    • PyTorch image models benchmark link

    Images

    base

    Python with ML and CV packages, CUDA (11.8.0), cuDNN (8.6.0), FFmpeg (4.4) with NVENC/NVDEC support ghcr.io/osai-ai/dokai:22.11-base

    dokai:22.11-base

    Supported NVIDIA architectures: Pascal (sm_60, sm_61), Volta (sm_70), Turing (sm_75), Ampere (sm_80, sm_86), Ada Lovelace (sm_89).

    CUDA (11.8.0), cuDNN (8.6.0) FFmpeg (release/4.4), nv-codec-headers (sdk/11.0) Python (3.10.6) CMake (3.22.1)

    pip==22.3.1 setuptools==65.5.1 packaging==21.3 numpy==1.23.4 opencv-python==4.6.0.66 scipy==1.9.3 matplotlib==3.6.2 pandas==1.5.1 scikit-learn==1.1.3 scikit-image==0.19.3 Pillow==9.3.0 librosa==0.9.2 albumentations==1.3.0 pyzmq==24.0.1 Cython==0.29.32 numba==0.56.4 requests==2.28.1 psutil==5.9.4 pydantic==1.10.2 PyYAML==6.0 notebook==6.5.2 ipywidgets==8.0.2 tqdm==4.64.1 pytest==7.2.0 pytest-cov==4.0.0 mypy==0.991 flake8==5.0.4 pre-commit==2.20.0

    pytorch

    TensorRT (8.5.1) , PyTorch (1.13.0), torchvision (0.14.0), torchaudio (0.13.0) and torch based libraries. ghcr.io/osai-ai/dokai:22.11-pytorch

    dokai:22.11-pytorch

    additionally to dokai:22.11-base:

    TensorRT (8.5.1) MAGMA (2.6.2)

    torch==1.14.0a0+git71fe069 (source, close to v1.13.0 after commit "ada lovelace (arch 8.9) support #87436") torchvision==0.14.0 (source, v0.14.0 tag) torchaudio==0.13.0 (source, v0.13.0 tag) pytorch-ignite==0.4.10 pytorch-argus==1.0.0 pretrainedmodels==0.7.4 efficientnet-pytorch==0.7.1 pytorch-toolbelt==0.5.2 kornia==0.6.8 timm==0.6.11 segmentation-models-pytorch==0.3.0

    tensor-stream

    Tensor Stream for real-time video streams decoding on GPU.
    ghcr.io/osai-ai/dokai:22.11-tensor-stream

    dokai:22.11-tensor-stream

    additionally to dokai:22.11-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
    build_logs.zip(471.12 KB)
  • v22.03(Mar 28, 2022)

    Updates

    • CUDA 11.6.0
    • torch 1.11.0 (from source, v1.11.0 tag)
    • torchvision 0.12.0 (from source, v0.12.0 tag)
    • torchaudio 0.11.0 (from source, v0.11.0 tag)
    • CMake (3.22.2)
    • Update other PyPI packages
    • Update README

    Images

    base

    Python with ML and CV packages, CUDA (11.6.0), FFmpeg (4.4) with NVENC support.

    dokai:22.03-base

    ghcr.io/osai-ai/dokai:22.03-base

    CUDA (11.6.0) FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)
    CMake (3.22.2)

    pip==22.0.3
    setuptools==59.5.0
    packaging==21.3
    numpy==1.21.5
    opencv-python==4.5.5.62
    scipy==1.8.0
    matplotlib==3.5.1
    pandas==1.4.1
    scikit-learn==1.0.1
    scikit-image==0.18.3
    Pillow==8.4.0
    librosa==0.8.1
    albumentations==1.1.0
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==6.0
    notebook==6.4.5
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==4.0.1

    pytorch

    PyTorch, torchvision and torch based libraries.

    dokai:22.03-pytorch

    ghcr.io/osai-ai/dokai:22.03-pytorch

    additionally to dokai:22.03-base:

    MAGMA (2.6.1)

    torch==1.11.0 (source, v1.11.0 tag)
    torchvision==0.12.0 (source, v0.12.0 tag)
    torchaudio==0.11.0 (source, v0.11.0 tag)
    pytorch-ignite==0.4.8
    pytorch-argus==1.0.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.5.4
    segmentation-models-pytorch==0.2.1
    kornia==0.6.3

    tensor-stream

    Tensor Stream.

    dokai:22.03-tensor-stream

    ghcr.io/osai-ai/dokai:22.03-tensor-stream

    additionally to dokai:22.03-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.11(Nov 9, 2021)

    Updates

    • torch 1.10.0 (from source, v1.10.0 tag)
    • torchvision 0.11.1 (from source, v0.11.1 tag)
    • torchaudio 0.10.0 (from source, v0.10.0 tag)
    • CMake (3.21.4)
    • Remove Apex installation
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.11-base

    dokai:21.11-base

    CUDA (11.4.2), cuDNN (8.2.4)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)
    CMake (3.21.4)

    pip==21.3.1
    setuptools==58.5.3
    packaging==21.2
    numpy==1.21.4
    opencv-python==4.5.4.58
    scipy==1.7.2
    matplotlib==3.4.3
    pandas==1.3.4
    scikit-learn==1.0.1
    scikit-image==0.18.3
    Pillow==8.4.0
    librosa==0.8.1
    albumentations==1.1.0
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==6.0
    notebook==6.4.5
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==4.0.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.11-pytorch

    dokai:21.11-pytorch

    additionally to dokai:21.11-base:

    MAGMA (2.6.1)

    torch==1.10.0 (source, v1.10.0 tag)
    torchvision==0.11.1 (source, v0.11.1 tag)
    torchaudio==0.10.0 (source, v0.10.0 tag)
    pytorch-ignite==0.4.7
    pytorch-argus==1.0.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.6.1

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.11-tensor-stream

    dokai:21.11-tensor-stream

    additionally to dokai:21.11-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.09(Sep 30, 2021)

    Updates

    • CUDA 11.4.2, cuDNN 8.2.4
    • Build torch 1.10.0-rc1 (from source, v1.10.0-rc1 tag)
    • FFmpeg with HTTPS support
    • kornia 0.5.11
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.09-base

    dokai:21.09-base

    CUDA (11.4.2), cuDNN (8.2.4)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)

    pip==21.2.4
    setuptools==58.1.0
    packaging==21.0
    numpy==1.21.2
    opencv-python==4.5.3.56
    scipy==1.7.1
    matplotlib==3.4.3
    pandas==1.3.3
    scikit-learn==1.0
    scikit-image==0.18.3
    Pillow==8.3.2
    librosa==0.8.1
    albumentations==1.0.3
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.4
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.09-pytorch

    dokai:21.09-pytorch

    additionally to dokai:21.09-base:

    MAGMA (2.6.1)

    torch==1.10.0-rc1 (source, v1.10.0-rc1 tag)
    torchvision==0.10.1 (source, v0.10.1 tag)
    torchaudio==0.9.1 (source, v0.9.1 tag)
    pytorch-ignite==0.4.6
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.5.11
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.09-tensor-stream

    dokai:21.09-tensor-stream

    additionally to dokai:21.09-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.08(Aug 12, 2021)

    Updates

    • CUDA 11.4.1, cuDNN 8.2.2
    • nv-codec-headers (sdk/11.0)
    • MAGMA 2.6.1
    • Build torch 1.10.0a0+git5b8389e from source (master branch)
    • pytorch-ignite 0.4.6
    • segmentation-models-pytorch 0.2.0
    • kornia 0.5.8
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.1), cuDNN (8.2.2), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.08-base

    dokai:21.08-base

    CUDA (11.4.1), cuDNN (8.2.2)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)

    pip==21.2.3
    setuptools==57.4.0
    packaging==21.0
    numpy==1.21.1
    opencv-python==4.5.3.56
    scipy==1.7.1
    matplotlib==3.4.2
    pandas==1.3.1
    scikit-learn==0.24.2
    scikit-image==0.18.2
    Pillow==8.3.1
    librosa==0.8.1
    albumentations==1.0.3
    pyzmq==22.2.1
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.3
    ipywidgets==7.6.3
    tqdm==4.62.0
    pytest==6.2.4
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.08-pytorch

    dokai:21.08-pytorch

    additionally to dokai:21.08-base:

    MAGMA (2.6.1)

    torch==1.10.0a0+git5b8389e (source, master branch)
    torchvision==0.10.0 (source, v0.10.0 tag)
    torchaudio==0.9.0 (source, v0.9.0 tag)
    pytorch-ignite==0.4.6
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.5.8
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.08-tensor-stream

    dokai:21.08-tensor-stream

    additionally to dokai:21.08-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.07(Jul 2, 2021)

    Updates

    • CUDA 11.3.1
    • Build torch 1.9.0 from source (v1.9.0 tag)
    • torchvision 0.10.0 from source (v0.10.0 tag)
    • torchaudio 0.9.0 from source (v0.9.0 tag)
    • timm 0.4.12
    • kornia 0.5.5
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.3.1), cuDNN (8.2.0), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.07-base

    dokai:21.07-base

    CUDA (11.3.1), cuDNN (8.2.0)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.10)

    pip==21.1.3
    setuptools==57.0.0
    packaging==20.9
    numpy==1.21.0
    opencv-python==4.5.2.54
    scipy==1.7.0
    matplotlib==3.4.2
    pandas==1.2.5
    scikit-learn==0.24.2
    scikit-image==0.18.2
    Pillow==8.2.0
    librosa==0.8.1
    albumentations==1.0.0
    pyzmq==22.1.0
    Cython==0.29.23
    numba==0.53.1
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.0
    ipywidgets==7.6.3
    tqdm==4.61.1
    pytest==6.2.4
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.07-pytorch

    dokai:21.07-pytorch

    additionally to dokai:21.07-base:

    torch==1.9.0 (source, v1.9.0 tag)
    torchvision==0.10.0 (source, v0.10.0 tag)
    torchaudio==0.9.0 (source, v0.9.0 tag)
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.1.3
    kornia==0.5.5
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.07-tensor-stream

    dokai:21.07-tensor-stream

    additionally to dokai:21.07-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.05(May 11, 2021)

    Updates

    • CUDA 11.3, cuDNN 8.2.0
    • Build torch 1.8.1 from source (v1.8.1 tag)
    • torchvision 0.9.1 from source (v0.9.1 tag)
    • torchaudio 0.8.1 from source (v0.8.1 tag)
    • timm 0.4.8 from source (master branch)
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.3), cuDNN (8.2.0), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.05-base

    dokai:21.05-base

    CUDA (11.3), cuDNN (8.2.0)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.1.1
    setuptools==56.2.0
    packaging==20.9
    numpy==1.20.3
    opencv-python==4.5.2.52
    scipy==1.6.3
    matplotlib==3.4.2
    pandas==1.2.4
    scikit-learn==0.24.2
    scikit-image==0.18.1
    Pillow==8.2.0
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.23
    numba==0.53.1
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.1
    PyYAML==5.4.1
    notebook==6.3.0
    ipywidgets==7.6.3
    tqdm==4.60.0
    pytest==6.2.4
    mypy==0.812
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.05-pytorch

    dokai:21.05-pytorch

    additionally to dokai:21.05-base:

    torch==1.8.1 (source, v1.8.1 tag)
    torchvision==0.9.1 (source, v0.9.1 tag)
    torchaudio==0.8.1 (source, v0.8.1 tag)
    pytorch-argus==0.2.1
    timm==0.4.8 (source, master branch)
    kornia==0.5.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.05-tensor-stream

    dokai:21.05-tensor-stream

    additionally to dokai:21.05-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.03(Mar 25, 2021)

    Updates

    • CUDA 11.2.2, cuDNN 8.1.1
    • FFmpeg 4.4
    • Build torch 1.8.0 from source (v1.8.0 tag)
    • torchvision 0.9.0
    • Add PyTorch package: torchaudio 0.8.0
    • timm 0.4.5
    • pytorch-argus 0.2.1
    • Update other PyPI packages
    • Support more GPU architectures for FFmpeg

    Images

    base

    Python with ML and CV packages, CUDA (11.2.2), cuDNN (8.1.1), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.03-base

    dokai:21.03-base

    ghcr.io/osai-ai/dokai:21.03-base

    CUDA (11.2.2), cuDNN (8.1.1)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.0.1
    setuptools==54.2.0
    packaging==20.9
    numpy==1.20.1
    opencv-python==4.5.1.48
    scipy==1.6.1
    matplotlib==3.3.4
    pandas==1.2.3
    scikit-learn==0.24.1
    scikit-image==0.18.1
    Pillow==8.1.2
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.22
    numba==0.53.0
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.1
    PyYAML==5.4.1
    notebook==6.3.0
    ipywidgets==7.6.3
    tqdm==4.59.0
    pytest==6.2.2
    mypy==0.812
    flake8==3.9.0

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.03-pytorch

    dokai:21.03-pytorch

    additionally to dokai:21.03-base:

    torch==1.8.0 (source, v1.8.0 tag)
    torchvision==0.9.0 (source, v0.9.0 tag)
    torchaudio==0.8.0 (source, v0.8.0 tag)
    pytorch-argus==0.2.1
    timm==0.4.5
    kornia==0.5.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.0
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.03-tensor-stream

    dokai:21.03-tensor-stream

    additionally to dokai:21.03-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.02(Feb 23, 2021)

    New features

    • CUDA 11.2.1, cuDNN 8.1.0
    • Build torch 1.9.0a0+c2b9283 from source (master branch)
    • Install timm 0.4.4 from source (master branch)
    • Add more Python packages: tqdm, PyYAML, pytest, mypy, flake8
    • Add more PyTorch packages: pretrainedmodels, efficientnet-pytorch, segmentation-models-pytorch
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.2.1), cuDNN (8.1.0), FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:21.02-base

    dokai:21.02-base

    CUDA (11.2.1), cuDNN (8.1.0)
    FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.0.1
    setuptools==53.0.0
    packaging==20.9
    numpy==1.20.1
    opencv-python==4.5.1.48
    scipy==1.6.1
    matplotlib==3.3.4
    pandas==1.2.2
    scikit-learn==0.24.1
    scikit-image==0.18.1
    Pillow==8.1.0
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.22
    numba==0.52.0
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.7.3
    PyYAML==5.4.1
    notebook==6.2.0
    ipywidgets==7.6.3
    tqdm==4.57.0
    pytest==6.2.2
    mypy==0.812
    flake8==3.8.4

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.02-pytorch

    dokai:21.02-pytorch

    additionally to dokai:21.02-base:

    torch==1.9.0a0+c2b9283 (source, master branch)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.4.4 (source, master branch)
    kornia==0.4.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.0
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.02-tensor-stream

    dokai:21.02-tensor-stream

    additionally to dokai:21.02-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.01(Jan 21, 2021)

    New features

    • CUDA 11.1.1
    • nv-codec-headers (sdk/10.0)
    • Build torch 1.8.0a0+4aea007 from source (master branch)
    • Update other PyPI packages
    • Docker Hub mirror

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:21.01-base

    dokai:21.01-base

    CUDA (11.1.1), cuDNN (8.0.5)
    FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==20.3.3
    setuptools==51.3.3
    packaging==20.8
    numpy==1.19.5
    opencv-python==4.5.1.48
    scipy==1.6.0
    matplotlib==3.3.3
    pandas==1.2.0
    notebook==6.2.0
    scikit-learn==0.24.1
    scikit-image==0.18.1
    albumentations==0.5.2
    Cython==0.29.21
    Pillow==8.1.0
    trafaret-config==2.0.2
    pyzmq==21.0.1
    librosa==0.8.0
    psutil==5.8.0
    pydantic==1.7.3
    requests==2.25.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.01-pytorch

    dokai:21.01-pytorch

    additionally to dokai:21.01-base:

    torch==1.8.0a0+4aea007 (source, master branch)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.3.4
    kornia==0.4.1
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.01-tensor-stream

    dokai:21.01-tensor-stream

    additionally to dokai:21.01-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v20.12(Dec 24, 2020)

    New features

    • CUDA 11.1, cuDNN 8.0.5, Ubuntu 20.04, Python 3.8.5
    • Build PyTorch and torchvision from source
    • Build CUDA libraries for Ampere architecture (TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0;7.5;8.0;8.6")
    • kornia

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.12-base

    dokai:20.12-base

    CUDA (11.1), cuDNN (8.0.5) FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.8.5)

    pip==20.3.3
    setuptools==51.0.0
    packaging==20.8
    numpy==1.19.4
    opencv-python==4.4.0.46
    scipy==1.5.4
    matplotlib==3.3.3
    pandas==1.1.5
    notebook==6.1.5
    scikit-learn==0.23.2
    scikit-image==0.18.0
    albumentations==0.5.2
    Cython==0.29.21
    Pillow==8.0.1
    trafaret-config==2.0.2
    pyzmq==20.0.0
    librosa==0.8.0
    psutil==5.8.0
    pydantic==1.7.3
    requests==2.25.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.12-pytorch

    dokai:20.12-pytorch

    additionally to dokai:20.12-base:

    torch==1.7.1 (source, v1.7.1 tag)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.3.2
    kornia==0.4.1
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.12-tensor-stream

    dokai:20.12-tensor-stream

    additionally to dokai:20.12-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v20.10(Oct 22, 2020)

    New features

    • pydantic
    • requests

    Fix

    • Build Tensor Stream for lower cuDNN versions 3.7+PTX;5.0;6.0;6.1;7.0;7.5

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.10-base

    dokai:20.10-base

    FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.6.9)

    pip==20.2.4
    setuptools==50.3.2
    packaging==20.4
    numpy==1.19.2
    opencv-python==4.4.0.44
    scipy==1.5.3
    matplotlib==3.3.2
    pandas==1.1.3
    notebook==6.1.4
    scikit-learn==0.23.2
    scikit-image==0.17.2
    albumentations==0.5.0
    Cython==0.29.21
    Pillow==8.0.0
    trafaret-config==2.0.2
    pyzmq==19.0.2
    librosa==0.8.0
    psutil==5.7.2
    dataclasses==0.7
    pydantic==1.6.1
    requests==2.24.0

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.10-pytorch

    dokai:20.10-pytorch

    additionally to dokai:20.10-base:

    torch==1.6.0
    torchvision==0.7.0
    pytorch-argus==0.1.2
    timm==0.2.1
    apex (master)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.10-tensor-stream

    dokai:20.10-tensor-stream

    additionally to dokai:20.10-pytorch:

    tensor-stream==0.4.6 (dev)

    Source code(tar.gz)
    Source code(zip)
  • v20.09(Sep 29, 2020)

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.09-base

    dokai:20.09-base

    FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.6.9)

    pip==20.2.3
    setuptools==50.3.0
    packaging==20.4
    numpy==1.19.2
    opencv-python==4.4.0.42
    scipy==1.5.2
    matplotlib==3.3.2
    pandas==1.1.2
    notebook==6.1.4
    scikit-learn==0.23.2
    scikit-image==0.17.2
    albumentations==0.4.6
    Cython==0.29.21
    Pillow==7.2.0
    trafaret-config==2.0.2
    pyzmq==19.0.2
    librosa==0.8.0
    psutil==5.7.2
    dataclasses==0.7

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.09-pytorch

    dokai:20.09-pytorch

    additionally to dokai:20.09-base:

    torch==1.6.0
    torchvision==0.7.0
    pytorch-argus==0.1.2
    timm==0.2.1
    apex (master)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.09-tensor-stream

    dokai:20.09-tensor-stream

    additionally to dokai:20.09-pytorch:

    tensor-stream==0.4.6 (dev)

    Source code(tar.gz)
    Source code(zip)
Owner
OSAI
OSAI is developing automatic systems that help to analyze a game and provide real-time game data with Computer Vision and AI in Sports.
OSAI
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Roger Labbe 13k Dec 29, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022