Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper]

Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R.T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L.K. Yamins, Judith E. Fan

This is the official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset. The code is built based on the original implementation of DPI-Net (https://github.com/YunzhuLi/DPI-Net).

Contact: [email protected] (Fish Tung)

Papers of GNS and DPI-Net:

** Learning to Simulate Complex Physics with Graph Networks ** [paper]

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia

** Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids ** [website] [paper]

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, Antonio Torralba **

Demo

Rollout from our learned model (left is ground truth, right is prediction)

Dominoes Roll Contain Drape

Installation

Clone this repo:

git clone https://github.com/htung0101/DPI-Net-p.git
cd DPI-Net-p
git submodule update --init --recursive

Install Dependencies if using Conda

For Conda users, we provide an installation script:

bash ./scripts/conda_deps.sh
pip install pyyaml

To use tensorboard for training visualization

pip install tensorboardX
pip install tensorboard

Install binvox

We use binvox to transform object mesh into particles. To use binvox, please download binvox from https://www.patrickmin.com/binvox/, put it under ./bin, and include it in your path with

export PATH=$PATH:$PWD/bin.

You might need to do chmod 777 binvox in order to execute the file.

Setup your own data path

open paths.yaml and write your own path there. You can set up different paths for different machines under different user name.

Preprocessing the Physion dataset

1) We need to convert the mesh scenes into particle scenes. This line will generate a separate folder (dpi_data_dir specified in paths.yaml) that holds data for the particle-based models

bash run_preprocessing_tdw_cheap.sh [SCENARIO_NAME] [MODE]

e.g., bash run_preprocessing_tdw_cheap.sh Dominoes train SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop, or Drape. MODE can be either train or test

You can visualize the original videos and the generated particle scenes with

python preprocessing_tdw_cheap.py --scenario Dominones --mode "train" --visualization 1

There will be videos generated under the folder vispy.

2) Then, try generate a train.txt and valid.txt files that indicates the trials you want to use for training and validaiton.

python create_train_valid.py

You can also design your specific split. Just put the trial names into one txt file.

3) For evalution on the red-hits-yellow prediciton, we can get the binary red-hits-yellow label txt file from the test dataset with

bash run_get_label_txt.sh [SCENARIO_NAME] test

This will generate a folder called labels under your output_folder dpi_data_dir. In the folder, each scenario will have a corresponding label file called [SCENARIO_NAME].txt

Training

Ok, now we are ready to start training the models.You can use the following command to train from scratch.

  • Train GNS
    bash scripts/train_gns.sh [SCENARIO_NAME] [GPU_ID]

SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop and Drape.

  • Train DPI
    bash scripts/train_dpi.sh [SCENARIO_NAME] [GPU_ID]

Our implementation is different from the original DPI paper in 2 ways: (1) our model takes as inputs relative positions as opposed to absolute positions, (2) our model is trained with injected noise. These two features are suggested in the GNS paper, and we found them to be critcial for the models to generalize well to unseen scenes.

  • Train with multiple scenarios

You can also train with more than one scenarios by adding different scenario to the argument dataf

 python train.py  --env TDWdominoes --model_name GNS --log_per_iter 1000 --training_fpt 3 --ckp_per_iter 5000 --floor_cheat 1  --dataf "Dominoes, Collide, Support, Link, Roll, Drop, Contain, Drape" --outf "all_gns"
  • Visualize your training progress

Models and model logs are saved under [out_dir]/dump/dump_TDWdominoes. You can visualize the training progress using tensorboard

tensorboard --logdir MODEL_NAME/log

Evaluation

  • Evaluate GNS
bash scripts/eval_gns.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can get the prediction txt file under eval/eval_TDWdominoes/[MODEL_NAME], e.g., test-Drape.txt, which contains results of testing the model on the Drape scenario. You can visualize the results with additional argument --vis 1.

  • Evaluate GNS-Ransac
bash scripts/eval_gns_ransac.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate DPI
bash scripts/eval_dpi.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate Models trained on multiple scenario Here we provide some example of evaluating on arbitray models trained on all scenarios.
bash eval_all_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_dpi.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_gns_ransac.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Visualize trained Models Here we provide an example of visualizing the rollout results from trained arbitray models.
bash vis_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can find the visualization under eval/eval_TDWdominoes/[MODEL_NAME]/test-[Scenario]. We should see a gif for the original RGB videos, and another gif for the side-by-side comparison of gt particle scenes and the predicted particle scenes.

Citing Physion

If you find this codebase useful in your research, please consider citing:

@inproceedings{bear2021physion,
    Title={Physion: Evaluating Physical Prediction from Vision in Humans and Machines},
    author= {Daniel M. Bear and
           Elias Wang and
           Damian Mrowca and
           Felix J. Binder and
           Hsiao{-}Yu Fish Tung and
           R. T. Pramod and
           Cameron Holdaway and
           Sirui Tao and
           Kevin A. Smith and
           Fan{-}Yun Sun and
           Li Fei{-}Fei and
           Nancy Kanwisher and
           Joshua B. Tenenbaum and
           Daniel L. K. Yamins and
           Judith E. Fan},
    url = {https://arxiv.org/abs/2106.08261},
    archivePrefix = {arXiv},
    eprint = {2106.08261},
    Year = {2021}
}
Owner
Hsiao-Yu Fish Tung
Postdoc at MIT CoCosci Lab and Stanford NeuroAILab. PhD at CMU MLD
Hsiao-Yu Fish Tung
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022