Self-Learning - Books Papers, Courses & more I have to learn soon

Overview

Self-Learning

This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask for permissions as specified in any document present here-in

Study Material

Basic

  • Linear Algebra Gilbert Strang
  • Probability & Statistics basics
  • Hands On Machine learning Book
  • Piyush Rai Slides, IIT-K
  • [ ]

Advanced

  • Elements of Statistical Learning Theory
  • Pattern Recognition & Machine Learning .Bishop
  • Deep learning .Goodfellow
  • Reinforcement Learning
  • Time Series
  • [ ]

DeepLearning.Ai

  • Deep Learning Specialization
  • Tensorflow in Practice
  • Tensorflow: Data & Deployment
  • AI for Everyone

YouTube Courses

  • 3Blue1Brown (LA, Calculus, DiffEq, Neural Networks)
  • Advanced Deep & Reinforcement Learning
  • Reinforcement Learning - David Silver

MIT-OCW

  • Linear Algebra
  • Introduction to Probability
  • Matrix Methods in Data Analysis, Signal Processing, and Machine Learning
  • Introduction to Algorithms
  • Design and Analysis of Algorithms

NPTEL

  • Numerical Optimization
  • Pattern Recognition and Neural Networks

Stanford

  • Natural Language Understanding
  • NLP with Deep Learning
  • Deep Learning
  • Reinforcement Learning

Projects

  • Image Classification
  • SISR, CAR, Denoising
  • Sentiment Analysis/Classification
  • Adversarial Machine Learning
  • Style Transfer/Generation
  • Time Series Forecasting
  • Cardinality Estimation
  • [ ]
  • Question Answering
  • Speech Synthesis
  • Text to SQL
  • Audio Source Separation
  • [ ]
  • [ ]
conda update conda
conda create -n py38 python=3.8
conda activate py38
conda install numpy scipy sympy matplotlib seaborn holoviews panel bokeh pandas scikit-learn scikit-image pillow ipython jupyter numba joblib dask dask-ml h2o django flask gevent requests lightgbm catboost nltk imbalanced-learn
pip install --upgrade opencv-python streamlit jupyter_http_over_ws xgboost
pip install --upgrade tensorflow keras-tuner
conda update --all

import tensorflow as tf
tf.config.list_physical_devices('GPU')

jupyter serverextension enable --py jupyter_http_over_ws
jupyter notebook --NotebookApp.allow_origin='https://colab.research.google.com' --port=6006 --NotebookApp.port_retries=0

conda create -n py38 python=3.8 --no-default-packages
conda remove -n py38 --all

conda install -c anaconda-nb-extensions nb_conda
conda install -c anaconda psycopg2

# Teamviewer Not Launching in Ubuntu18.04
systemctl restart teamviewerd

python 

SciPy Stack (Numpy, Matplotlib, Pandas, SymPy & Scipy Included)

https://scipy.org

SEABORN (Powerful pretty plotting library)

https://seaborn.pydata.org

Scikit-Learn (Standard ML and many algorithms implemented)

https://scikit-learn.org/stable/

High-level Neural Network API (Yet customizable)

https://keras.io

Visualising Neural Network Training, Computation graph and a lot

https://www.tensorflow.org/tensorboard

Backend for Keras, Powerful tool for ML/DL & Simulation research

https://www.tensorflow.org

Distributed load balanced data handling (over-system & clusters)

https://dask.org

ML implementation of Most Scikit-learn Algorithms, highly scalable

https://ml.dask.org

Great examples on how to use DASK

https://examples.dask.org

Machine learning, Data processing & more on Nvidia GPU

https://rapids.ai

Building High level data apps with Ease

https://www.streamlit.io

TF projector for visualization with Dimensionality reduction

https://projector.tensorflow.org

Creating VMs (Infra+Platform) over GCP

https://console.cloud.google.com/getting-started

Codelabs provide a Step-wise, learning tutorials, hands-on coding experience. To build a small application OR adding features into existing application

https://codelabs.developers.google.com

Connecting Google colab notebooks to local runtime

https://research.google.com/colaboratory/local-runtimes.html

Connecting Google Colab to Local Runtime

pip install jupyter_http_over_ws

jupyter serverextension enable --py jupyter_http_over_ws

jupyter notebook
--NotebookApp.allow_origin='https://colab.research.google.com'
--port=6006
--NotebookApp.port_retries=0

https://github.com/quantopian/zipline https://github.com/EliteQuant/EliteQuant https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network

Windows/Linux Utility Software

  • 7-zip
  • Adobe Reader DC
  • Anaconda3
  • AnyDesk
  • AOMEI Partition Wizard
  • CISCO AnyConnect
  • Dev-C++
  • Free Download Manager
  • Git
  • Google Chrome
  • Java SDK
  • MS Office/One-Drive
  • VS Code
  • Mozilla Firefox
  • PostgreSQL
  • PowerISO
  • Putty
  • Samsung Magician
  • Spotify
  • Sublime Text 3
  • TeamViewer
  • Universal ADB driver for Vysor
  • VLC Media Player
  • WinRAR
  • WinSCP

Hobby-Projects

Owner
Achint Chaudhary
Computer Science Masters at Indian Institute of Science, Bangalore
Achint Chaudhary
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022