Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

Overview

One model to speak them all 🌎

Audio Language Text
Chinese 人人生而自由,在尊严和权利上一律平等。
English All human beings are born free and equal in dignity and rights.
Japanese すべての人間は、生まれながらにして自由であり、かつ、尊厳と権利とについてびょうどうである。
Korean 모든 인간은 태어날 때부터 자유로우며 그 존엄과 권리에 있어 동등하다.
German Alle Menschen sind frei und gleich an Würde und Rechten geboren.
Russian Все люди рождаются свободными и равными в своем достоинстве и правах.
Spanish Todos los seres humanos nacen libres e iguales en dignidad y derechos.
Gujarati પ્રતિષ્ઠા અને અધિકારોની દૃષ્ટિએ સર્વ માનવો જન્મથી સ્વતંત્ર અને સમાન હોય છે.
...even when there are only 30 utterances for training
Norwegian Alle mennesker er født frie og med samme menneskeverd og menneskerettigheter.
Romanian Toate ființele umane se nasc libere și egale în demnitate și în drepturi.
Greek Όλοι οι άνθρωποι γεννιούνται ελεύθεροι και ίσοι στην αξιοπρέπεια και τα δικαιώματα.

This is an implementation of the paper Multilingual Byte2Speech Models for Scalable Low-resource Speech Synthesis, which can handle 40+ languages in a single model, and learn a brand new language in few shots or minutes of recordings. The code is partially based on the open-source Tacotron2 and Transformer-TTS. More audio samples of the paper are available here.

Quickstart

We follow the paper's training recipe, but with open datasets instead. By a combination of 15 speech datasets with 572 speakers in 38 languages, we can reach results similar to what we demonstrated in the paper to an extent, as shown by the audio samples above. These datasets are listed below, the preprocessor scripts below are located at corpora/. Locations and details to download the data are also given in the respective preprocessor.

Name Preprocessor script name Languages
M-AILABS caito es-es, fr-fr, de-de, uk-ua, ru-ru, pl-pl, it-it, en-us, en-uk
CSS-10 css10 es-es, fr-fr, ja-jp, de-de, fi-fi, hu-hu, ja-jp, nl-nl, ru-ru, zh-cn
SIWIS siwis fr-fr
JSUT jsut ja-jp
KSS kss ko-kr
Databaker databaker zh-cn
LJSpeech ljspeech en-us
NST nst da-dk, nb-no
TTS-Portuguese portuguese pt-br
Thorsten Mueller thorsten de-de
Google google bn-bd, bn-in, ca-es, eu-es, gl-es, gu-in, jv-id, km-kh, kn-in, ml-in, mr-in, my-mm, ne-np, si-lk, su-id, ta-in, te-in, yo-ng
RuLS lsru ru-ru
English Bible enbible en-us
Hifi-TTS hifitts en-us, en-uk
RSS rss ro-ro

Preprocessing

  1. Please download and extract these datasets to the dataset_path specified in corpora/__init__.py. You can change the dataset_path, transformed_path and packed_path to your own.
  2. Run the preprocessor for each dataset given in corpora. The results are saved to transformed_path. include_corpus in corpora/__init__.py could be modified to add or remove datasets to be used. Particularly, you may refer to the preprocessors to include your own datasets to the training,
    and then add the dataset to include_corpus and dataset_language in corpora/__init__.py.
  3. Run the corpora/process_corpus.py, which filters the dataset, trims the audios, produces the metadata, generates the mel spectrograms, and pack all the features into a single zip file. The processed dataset will be put at packed_path, which uses around 100GB space. See the script for details.

Training

Similarly, we split the dataset into three tiers. Below are the commands to train and evaluate on each tier. Please substitute the directories with your own. The evaluation script can be run simultaneously with the training script. You may also use the evaluation script to synthesize samples from pretrained models. Please refer to the help of the arguments for their meanings.

Besides, to report CER, you need to create azure_key.json with your own Azure STT subscription, with content of {"subscription": "YOUR_KEY", "region": "YOUR_REGION"}, see utils/transcribe.py. Due to significant differences of the datasets used, the implementation is for demonstration only and could not fully reproduce the results in the paper.

T1

python -m torch.distributed.launch --nproc_per_node=NGPU train.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --training_languages=en-us:de-de:ja-jp:es-es --warmup_languages=en-us --ddp=True --eval_steps=40000:100000

python eval.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --start_step=100000 --eval_languages=en-us:de-de:ja-jp

T2

python -m torch.distributed.launch --nproc_per_node=NGPU train.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --training_languages=en-us:de-de:fr-fr:ru-ru:en-uk:es-es:uk-ua:pl-pl:it-it:ja-jp:zh-cn --ddp=True --hparams="warmup_steps=350000" --restore_from=T1_MODEL_DIR/model.ckpt-350000 --eval_steps=400000:450000 --eval_languages=zh-cn:ru-ru:it-it

python eval.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --start_step=400000 --eval_languages=zh-cn:ru-ru:it-it

T3

python -m torch.distributed.launch --nproc_per_node=NGPU train.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --training_languages=en-us:de-de:fr-fr:ru-ru:en-uk:es-es:uk-ua:pl-pl:it-it:ja-jp:zh-cn:nl-nl:fi-fi: ko-kr:eu-es:pt-br:hu-hu:jv-id:gl-es:gu-in:kn-in:da-dk:su-id:ta-in:ca-es:ml-in:te-in:my-mm:yo-ng:km-kh:mr-in:ne-np:bn-bd: bn-in:si-lk --ddp=True --hparams="warmup_steps=650000,batch_frame_quad_limit=6500000" --restore_from=T2_MODEL_DIR/model.ckpt-650000 --eval_steps=700000:750000 --eval_languages=ko-kr:da-dk:te-in

python eval.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --start_step=700000 --eval_languages=ko-kr:da-dk:te-in

Few-shot adaptation

Norwegian Bokmal (nb-no), Greek (el-gr), and Romanian (ro-ro) are excluded from the training dataset and can be used for few-shot/low-resource adaptation. The command below gives an example for adaptation to el-gr with 100 samples, and you may substitute the --adapt_languages and --downsample_languages with your own.

python -m torch.distributed.launch --nproc_per_node=NGPU train.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --training_languages=en-us:de-de:fr-fr:ru-ru:en-uk:es-es:uk-ua:pl-pl:it-it:ja-jp:zh-cn:nl-nl:fi-fi: ko-kr:eu-es:pt-br:hu-hu:jv-id:gl-es:gu-in:kn-in:da-dk:su-id:ta-in:ca-es:ml-in:te-in:my-mm:yo-ng:km-kh:mr-in:ne-np: bn-bd:bn-in:si-lk --adapt_languages=el-gr --downsample_languages=el-gr:100 --ddp=True --hparams="warmup_steps=800000" --restore_from=T3_MODEL_DIR/model.ckpt-700000

python eval.py --model-dir=MODEL_DIR --log-dir=LOG_DIR --data-dir=DATA_DIR --start_step=700000 --eval_languages=el-gr

Performance

Below listed the best CERs of selected languages reached by models from each tier on these open datasets, as well as the CERs on few-shot adaptation. The CERs are based on Azure Speech-to-Text.

T1 en-us de-de ja-jp
2.68% 2.17% 19.06%
T2 it-it ru-ru zh-cn
1.95% 3.21% 7.30%
T3 da-dk ko-kr te-in
1.31% 0.94% 4.41%

Adaptation

#Samples nb-no el-gr ro-ro
30 9.18% 5.71% 5.58%
100 3.63% 4.63% 4.89%

Pretrained Models

The pretrained models are available at OneDrive Link. Metadata for eval are also given to aid fast reproduction. Below listed are the models provided.

Base models

  • T1 350k steps, ready for T2
  • T2 650k steps, ready for T3
  • T3 700k steps, ready for adaptation
  • T3 1.16M steps, which reaches satisfactory performances on most languages

Few-shot adaptation

  • nb-no, 30 samples, at 710k steps
  • nb-no, 100 samples, at 750k steps
  • el-gr, 30 samples, at 1M steps
  • el-gr, 100 samples, at 820k steps
  • ro-ro, 30 samples, at 970k steps
  • ro-ro, 100 samples, at 910k steps

Synthesis

To synthesize audios from the pretrained models, download the models along with the metadata files (lang_id.json and spk_id.json). Since there are no ground truth mels, you need to create metadata with dummy mel targets information , and run eval.py without neither --zipfilepath specified nor mels.zip present in --data-dir. The metadata file takes the form of SPEAKERNAME_FILEID|DUMMY_LENGTH|TEXT|LANG for each line of the file. For example, you can generate the audio examples above by saving the following metadata to script.txt:

databaker_0|500|人人生而自由,在尊严和权利上一律平等。|zh-cn
ljspeech_0|500|All human beings are born free and equal in dignity and rights.|en-us
jsut_0|500|すべての人間は、生まれながらにして自由であり、かつ、尊厳と権利とについてびょうどうである。|ja-jp
kss_0|500|모든 인간은 태어날 때부터 자유로우며 그 존엄과 권리에 있어 동등하다.|ko-kr
thorsten_0|500|Alle Menschen sind frei und gleich an Würde und Rechten geboren.|de-de
hajdurova_0|500|Все люди рождаются свободными и равными в своем достоинстве и правах.|ru-ru
tux_0|500|Todos los seres humanos nacen libres e iguales en dignidad y derechos.|es-es
guf02858_0|500|પ્રતિષ્ઠા અને અધિકારોની દૃષ્ટિએ સર્વ માનવો જન્મથી સ્વતંત્ર અને સમાન હોય છે.|gu-in

, and with the command python eval.py --model-dir=T3_MODEL_DIR --log-dir=OUTPUT_DIR --data-dir=METADATA_DIR --eval_meta=script.txt --eval_step=1160000 --no_wait=True. You may refer to lang_id.json and spk_id.json to synthesize audios with other languages or speakers.

The waveforms are produced by Griffin-Lim, while mel spectrograms are also saved to SPEAKERNAME_FILEID.npy, which are normalized to a [-4, 4] range. Pretrained vocoders like Wavenet can be used to reach better quality. Those using recipes similar to Tacotron2 should be applicable to these mels, although you need to map mels to a range of [0, 1], simply by mels = (mels + 8) / 4.

Owner
Mutian He
Mutian He
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022