[SDM 2022] Towards Similarity-Aware Time-Series Classification

Related tags

Deep LearningSimTSC
Overview

SimTSC

This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Series Classification (SimTSC), a conceptually simple and general framework that models similarity information with graph neural networks (GNNs). We formulate time-series classification as a node classification problem in graphs, where the nodes correspond to time-series, and the links correspond to pair-wise similarities. overview

Installation

pip3 install -r requirements.txt

Datasets

We provide an example dataset Coffee in this repo. You may download the full UCR datasets here. Multivariate datasets are provided in this link.

Quick Start

We use Coffee as an example to show how to run the code. You may easily try other datasets with arguments --dataset. We will show how to get the results for DTW+1NN, ResNet, and SimTSC.

First, prepare the dataset with

python3 create_dataset.py

Then install the python wrapper of UCR DTW library with

git clone https://github.com/daochenzha/pydtw.git
cd pydtw
pip3 install -e .
cd ..

Then compute the dtw matrix for Coffee with

python3 create_dtw.py
  1. For DTW+1NN:
python3 train_knn.py
  1. For ResNet:
python3 train_resnet.py
  1. For SimTSC:
python3 train_simtsc.py

All the logs will be saved in logs/

Multivariate Datasets Quick Start

  1. Download the datasets and pre-computed DTW with this link.

  2. Unzip the file and put it into datasets/ folder

  3. Prepare the datasets with

python3 create_dataset.py --dataset CharacterTrajectories
  1. For DTW+1NN:
python3 train_knn.py --dataset CharacterTrajectories
  1. For ResNet:
python3 train_resnet.py --dataset CharacterTrajectories
  1. For SimTSC:
python3 train_simtsc.py --dataset CharacterTrajectories

Descriptions of the Files

  1. create_dataset.py is a script to pre-process dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  • --shot: how many training labels are given in each class
  1. create_dtw.py is a script to calculate pair-wise DTW distances of a dataset and save them into npy. Some important hyperparameters are as follows.
  • --dataset: what dataset to process
  1. train_knn.py is a script to do classfication DTW+1NN of a dataset. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  1. train_resnet.py is a script to do classfication of a dataset with ResNet. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  1. train_simtsc.py is a script to do classfication of a dataset with SimTSC. Some important hyperparameters are as follows.
  • --dataset: what dataset we operate on
  • --shot: how many training labels are given in each class
  • --gpu: which GPU to use
  • --K: number of neighbors per node in the constructed graph
  • --alpha: the scaling factor of the weights of the constructed graph
Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022